Defining the Accelerated Approval Mechanism

Thomas J. Herzog, MD
Deputy Director, University of Cincinnati Cancer Institute
Professor of Obstetrics & Gynecology, UC College of Medicine
Cincinnati, Ohio, USA
Associate Director GOG-Partners
Disclosures

• **Scientific Advisory Boards:**
 • Aravive, AZ, Caris, Clovis, Eisai, Epsilogen, Genelux, Genentech, GSK, Merck
• This presentation is the property of The GOG Foundation, Inc. (“GOG”) and/or our Sponsors and is strictly confidential. It contains information intended only for the person to whom it is transmitted and is not to be shared with any third party without the prior written consent of the GOG General Counsel.

• With receipt of this information, recipient acknowledges and agrees that: (i) this document is not to be distributed; (ii) the recipient will not copy, duplicate, photograph, reproduce, divulge, or distribute this confidential information, in whole or in part, without the express written consent of the GOG General Counsel; and (iii) all of the information herein will be treated as confidential material with no less care than that afforded to its own confidential material.
THE HISTORY of DRUG REGULATION in the UNITED STATES

1906 - 2006

Centennial

PIONEERS IN CONSUMER PROTECTION
LEADERS IN THE SCIENCE OF PUBLIC HEALTH
• Most U.S. drugs were imported
• Education & standards were established

• Legislative responses to the problem
• Journalists expose abuses as manufacturers cont. to sell unsafe drugs
 ° Collier’s magazine
 ° Upton Sinclair’s novel, *The Jungle*
1906 Pure Food & Drugs Act

- Prohibited interstate commerce of unsafe drugs
- Required proper labeling
- Identified official standards for drugs

Harvey Wiley - head of Bureau of Chemistry in USDA - major champion of reform
Other Notable Drug Regulatory Historical Landmarks

1906 Food & Drug Act
- Limits of 1906 Act: No inspections or enforcement; Sulfanilamide disaster Mass poisoning 1937; Food, Drug & Cosmetic Act

1938 Limits of 1906 Act: No inspections or enforcement; Sulfanilamide disaster Mass poisoning 1937; Food, Drug & Cosmetic Act

1951 Limits of 1938 Act: Lack of oversight for some drugs & Role of MD’s in prescribing & illegal sales Durham Humphrey Amendment

1962 Limits of 1951 Amendment act: Lack of clarity for what required prescription; 1960 NDA for Thalidomide; 20K Americans received despite no FDA approval- 624 pregnant Kefauver Harris Amendment

1962 Durham Humphrey Amendment

1992 Accelerated Approval Pathway formed under the Prescription Drug User Act (PDUA)

1983 Public Health awareness of rare diseases; No incentive for Pharma to pursue Orphan Drug Act
- Pt population < 200K; Market exclusivity 7 yrs & grants & tax credits; > 700 drugs approved

2012 Clarified surrogate & intermediate trial end point in approval FDA Safety Innovation Act
Key Programs In Accelerating Drug Development

<table>
<thead>
<tr>
<th>Program</th>
<th>Established</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Track</td>
<td>1997</td>
</tr>
<tr>
<td>Breakthrough Therapy</td>
<td>2012</td>
</tr>
<tr>
<td>Accelerated Approval</td>
<td>1992</td>
</tr>
<tr>
<td>Priority Review</td>
<td>1992</td>
</tr>
</tbody>
</table>

- **Fast Track**: A process designed to facilitate the development, and expedite the review of drugs to treat serious conditions and fill an unmet medical need. *(Established 1997)*

- **Breakthrough Therapy**: A process designed to expedite the development and review of drugs which may demonstrate substantial improvement over available therapy. *(Established 2012)*

- **Accelerated Approval**: These regulations allowed drugs for serious conditions that filled an unmet medical need to be approved based on a surrogate endpoint. *(Established 1992)*

- **Priority Review**: A Priority Review designation means FDA’s goal is to take action on an application within 6 months. *(Established 1992)*
Priority Review

- Priority Review - introduced in 1992 as alternative to Standard review
- Designed to speed approval times
- Take action on application within 6 mos. vs. 10 mos. with Standard Review
- Must still meet same scientific standard for approval & Pharma must request (60 d Decision)
- Guide for Industry for Expedited Programs for Serious Conditions – Drugs and Biologics
FDA Fast Track (1997)

• To facilitate development, & expedite review of drugs to treat **serious** conditions & fill **unmet medical need** (no option or better option)

• **Serious**: survival, day-to-day functioning, or likely condition will progress; **Cancer**

• Pharma request anytime & FDA response < 60 d

• Benefits:
 – More frequent meetings & written communications
 – Implicit approval of trial design, endpoints, biomarkers
 – Eligible for **Accelerated Approval & Priority Review**
 – **Rolling review** (can submit sections for approval such as BLA or NDA rather than waiting for all sections)
FDA Breakthrough Therapy (2012)

- Preliminary clinical evidence the agent or combination demonstrates “substantial” benefit over existing therapy on one or more clinically significant endpoints
 - Established surrogate endpoint considered reasonably likely to predict a clinical benefit
 - Effect on a pharmacodynamic biomarker(s) that suggests the potential for a clinically meaningful effect on the underlying disease
 - Significantly improved safety profile compared to available therapy
- BTD is eligible for the following:
 - All Fast Track designation features
 - Intensive guidance on an efficient drug development program, beginning as early as Phase 1
 - Organizational commitment involving senior managers
- Sample: 30-40 patients
- Efficacy bar is higher than Accelerated Approval targets
- 15-30% of BTD applications are approved annually
FDA Accelerated Approval (AA): 1992

- It is full, rigorous FDA approval: Data standards are as high for AA as for conventional approval pathways
- Science around surrogate endpoints is accepted & appropriate.
- Two important features: Speeds approval process & incentivizes investment in novel therapies
- Serious or life-threatening diseases
- Must provides a benefit over existing therapies
- A surrogate reasonably likely to predict clinical benefit
- Subject to the requirement to verify benefit
- Confirmatory trial(s) would usually be underway
- Applicant should carry out studies with due diligence
- Since introduction of AA, >250 drugs have received AA, with roughly 42% rare diseases or conditions & 65% for oncology drugs. Over 50% of AA converted to full FDA approval.
FDA Accelerated Approval: Nuances

• High unmet medical need (effective therapy absent)
• Surrogate of clinical benefit as endpoint
 – Single agent studies: ORR; combination studies: PFS
 • ORR: Investigator or BICR assessed; PFS: BICR and placebo-controlled (preferred)
 • Duration of response (DOR) required (target: 2 assessment cycles) with minimum follow-up of 6 months from last response
 • Number of complete responses (CR) considered
• Sample size of 100 homogeneous evaluable, well-defined subjects
• Safety database of 200-300 subjects
 – Tolerability is an important review issue
• Confirmatory study in same tumor type significantly enrolled at time of accelerated approval
Thoughts About Combinations

- Single arm trials can lead to accelerated approval
- Must sort out the relative contribution
- Can utilize historical studies to sort out relative contribution
- The “official FDA opinion” is that randomized trials are needed to sort out relative contribution
- Substantial activity in single arm trials can lead to FDA approval
Simultaneous review decisions for pembrolizumab plus lenvatinib in Australia, Canada and US
Brazil, Singapore, Switzerland added 2020 & Israel, UK 2021

On September 17, 2019, the Food and Drug Administration granted accelerated approval to the combination of pembrolizumab (KEYTRUDA, Merck) plus lenvatinib (LENVIMA, Eisai) for the treatment of patients with advanced endometrial carcinoma that is not microsatellite instability high (MSI-H) or mismatch repair deficient (dMMR) and who have disease progression following prior systemic therapy but are not candidates for curative surgery or radiation.

This review was conducted under Project Orbis, an initiative of the FDA Oncology Center of Excellence. Project Orbis provides a framework for concurrent submission and review of oncology drugs among international partners. The FDA, the Australian Therapeutic Goods Administration, and Health Canada collaborated on this review, allowing for simultaneous decisions in all three countries.
The FDA’s accelerated approval process: When drugs are cleared for sale based on limited evidence

Accelerated approval is an important topic for journalists to consider in their ongoing coverage of drug costs in America. This article explains how the process works -- including examples of successes and controversies. Plus: 5 reporting tips.
Since the US Food and Drug Administration (FDA) established its accelerated approval pathway for drugs in 1992, nearly half (112) of the 253 drugs authorized have not been confirmed as clinically effective, an investigation by The BMJ has found.

Elisabeth Mahase, clinical reporter at The BMJ, carried out an in depth analysis of FDA data up to 31 December 2020 and found that of these 112 drugs approved in the last 28 years a fifth (24) have been on the market for more than five years and some have been on the market for more than two decades - often with a hefty price tag.

The accelerated pathway allows drugs onto the market before efficacy has been proven, she explains. But as part of this approval, the manufacturer must conduct post-approval studies—known as phase IV confirmatory trials—to “verify the anticipated clinical benefit.” If these trials show no benefit, the drug’s approval can be cancelled.
Criticisms of Accelerated Approval Process

- Confirmatory Trial Failed: Withdrawal
- No Confirmation: Dangling Approval
- Added Cost
- Safety
Accelerated Approval Pushback

<table>
<thead>
<tr>
<th>Accelerated Approval</th>
<th>Drug</th>
<th>Indication</th>
<th>Full Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/28/1999</td>
<td>PLD</td>
<td>Metastatic ovarian carcinoma refractory to paclitaxel and platinum-based chemotherapy</td>
<td>6/10/2008</td>
</tr>
<tr>
<td>12/19/14</td>
<td>Olaparib</td>
<td>Mutated BRCA genes (gBRCAm)-associated ovarian cancer who have received three or more chemotherapy treatments accompanied by approval of the companion BRACAnalysis CDx (Myriad)</td>
<td>8/17/17</td>
</tr>
<tr>
<td>12/9/2016</td>
<td>Rucaparib</td>
<td>Deleterious BRCAmut (germline &/or somatic) associated adv ovarian cancer treated with 2 or more chemotherapies</td>
<td>4/6/2018</td>
</tr>
<tr>
<td>6/12/2018</td>
<td>Pembro</td>
<td>Treatment of patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy whose tumors express PD-L1 (CPS >/=1) as determined by an FDA approved test</td>
<td>10/13/2021</td>
</tr>
<tr>
<td>9/17/2019</td>
<td>Pembro Lenvatinib</td>
<td>In combination with lenvatinib for advanced endometrial carcinoma not MSI-H or dMMR, with progression following systemic therapy and not candidates for curative surgery or radiation</td>
<td>7/21/2021</td>
</tr>
<tr>
<td>Date</td>
<td>Drug</td>
<td>Indication</td>
<td>Orig projected completion:</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>5/23/2017</td>
<td>Pembro</td>
<td>Treatment of adult & pediatric patients with unresectable or metastatic, microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options.</td>
<td>3/31/2023</td>
</tr>
<tr>
<td>6/16/2020</td>
<td>Pembro</td>
<td>Treatment of adult & pediatric patients with unresectable or metastatic tumor mutational burden high (TMB H) [=10 muts/megabase (mut/Mb)] solid tumors, as determined by an FDA-approved test, that have progressed following prior treatment and who have no satisfactory alternative treatment options.</td>
<td>12/31/2025</td>
</tr>
<tr>
<td>4/22/2021</td>
<td>Dostarlimab</td>
<td>Treatment of adult patients with dMMR recurrent or advanced endometrial cancer, as determined by an FDA-approved test, that has progressed on or following prior treatment with a plat-containing regimen.</td>
<td>7/31/2022</td>
</tr>
<tr>
<td>8/17/2021</td>
<td>Dostarlimab</td>
<td>Treatment for adult patients with mismatch repair deficient (dMMR) recurrent or advanced solid tumors, as determined by an FDA-approved test, that have progressed on or following prior treatment and who have no satisfactory alternative treatment options.</td>
<td>10/31/2022</td>
</tr>
<tr>
<td>9/20/2021</td>
<td>Tisotumab Vedotin</td>
<td>Treatment of adult patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy</td>
<td>11/30/2024</td>
</tr>
<tr>
<td>ADC</td>
<td>Target</td>
<td>Antibody</td>
<td>Linker</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Adcetris®</td>
<td>CD30</td>
<td>Chimeric IgG1</td>
<td>Valine-citrulline</td>
</tr>
<tr>
<td>Kadcyla®</td>
<td>HER2</td>
<td>Humanized IgG1</td>
<td>SMCC</td>
</tr>
<tr>
<td>Besponsa®</td>
<td>CD22</td>
<td>Humanized IgG4</td>
<td>ActBut</td>
</tr>
<tr>
<td>Mylotarg®</td>
<td>CD33</td>
<td>Humanized IgG4</td>
<td>ActBut</td>
</tr>
<tr>
<td>Polivy®</td>
<td>CD79b</td>
<td>Humanized IgG1</td>
<td>Valine-citrulline</td>
</tr>
<tr>
<td>Padcev®</td>
<td>Nectin-4</td>
<td>Human IgG1</td>
<td>Valine-citrulline</td>
</tr>
<tr>
<td>Enhertu®</td>
<td>Her2</td>
<td>Humanized IgG1</td>
<td>Tetrapeptide</td>
</tr>
<tr>
<td>Trodelvy®</td>
<td>Trop-2</td>
<td>Humanized IgG1</td>
<td>Hydrolysable CL2A</td>
</tr>
<tr>
<td>Blenrep®</td>
<td>BCMA</td>
<td>Humanized IgG1</td>
<td>maleimidocaproyl</td>
</tr>
<tr>
<td>Zynlonta™</td>
<td>CD19</td>
<td>Humanized IgG1</td>
<td>Valine-alanine</td>
</tr>
<tr>
<td>Drug</td>
<td>Maker</td>
<td>Condition</td>
<td>Trade name</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Gemtuzumab ozogamicin</td>
<td>Pfizer/Wyeth</td>
<td>relapsed acute myelogenous leukemia (AML)</td>
<td>Mylotarg</td>
</tr>
<tr>
<td>Brentuximab vedotin</td>
<td>Seattle Genetics, Millennium/Takeda</td>
<td>relapsed HL and relapsed sALCL</td>
<td>Adcetris</td>
</tr>
<tr>
<td>Trastuzumab emtansine</td>
<td>Genentech, Roche</td>
<td>HER2-positive metastatic breast cancer (mBC) following treatment with trastuzumab and a maytansinoid</td>
<td>Kadcyla</td>
</tr>
<tr>
<td>Inotuzumab ozogamicin</td>
<td>Pfizer/Wyeth</td>
<td>relapsed or refractory CD22-positive B-cell precursor acute lymphoblastic leukemia</td>
<td>Besponsa</td>
</tr>
<tr>
<td>Moxetumomab pasudotox</td>
<td>Astrazeneca</td>
<td>adults with relapsed or refractory hairy cell leukemia (HCL)</td>
<td>Lumoxiti</td>
</tr>
<tr>
<td>Polatuzumab vedotin-piiq</td>
<td>Genentech, Roche</td>
<td>relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL)</td>
<td>Polivy</td>
</tr>
<tr>
<td>Enfortumab vedotin</td>
<td>Astellas/Seattle Genetics</td>
<td>adults with locally adv or metastatic urothelial cancer who have received a CKI & Pt-containing therapy</td>
<td>Padcev</td>
</tr>
<tr>
<td>Trastuzumab deruxtecan</td>
<td>AstraZeneca/Daiichi Sankyo</td>
<td>Adults with unresectable or metastatic HER2-positive breast cancer who have received >2 prior anti-HER2 based regimens</td>
<td>Enhertu</td>
</tr>
<tr>
<td>Sacituzumab govitecan</td>
<td>Immunomedics</td>
<td>adults with metastatic triple-negative breast cancer (mTNBC) who have received at least two prior therapies for patients with relapsed or refractory metastatic disease</td>
<td>Trodelvy</td>
</tr>
<tr>
<td>Belantamab mafodotin-blmf</td>
<td>GlaxoSmithKline (GSK)</td>
<td>adults with relapsed or refractory multiple myeloma</td>
<td>Blenrep</td>
</tr>
<tr>
<td>Loncastuximab tesirine-lpyl</td>
<td>ADC Therapeutics</td>
<td>Large B-cell lymphoma</td>
<td>Zynlonta</td>
</tr>
<tr>
<td>Tisotumab vedotin-tftv</td>
<td>Seagen Inc</td>
<td>Recurrent or metastatic cervical cancer</td>
<td>Tivdak</td>
</tr>
</tbody>
</table>
Twelve New Approvals in the Last 6 Years

- Melphalan (1964)
- Cyclophosphamide (1959)
- Cisplatin (1978)
- Etoposide (1983)
- Paclitaxel Accelerated (1992)
- Paclitaxel Full (1998)
- Carboplatin (1989)
- Gemcitabine/Carboplatin PISOC (2006)
- PLD-Accelerated ROC (1999)
- PLD-Full ROC (2005)
- PLD-Accelerated ROC (1999)
- Pembrolizumab MSI/dMMR ROC (2017)
- Olaparib Maintenance PSOC (2017)
- Niraparib Maintenance PSOC (2017)
- Olaparib + Bevacizumab HRD+ 1-L Maintenance (2020)
- Olaparib gBRCAmut 1-L Maintenance (2020)
- Olaparib gBRCAmut/ sBRCAmut ROC (2016)
- Rucaparib gBRCAmut ROC (2016)
- Chemo + Bevacizumab PSOC (2016)
- Bevacizumab 1-L + Maintenance (2018)
- Chemo + Bevacizumab (2014) PROC
- Rucaparib Maintenance PSOC (2018)
- Pembrolizumab 1-L Maintenance (2020)
- Niraparib Maintenance (2020)
- Rucaparib Maintenance PSOC (2018)
- Olaparib gBRCAmut 1-L Maintenance (2018)
- Bevacizumab 1-L + Maintenance (2018)
- Pembrolizumab MSI/dMMR ROC (2017)
- Olaparib Maintenance PSOC (2017)
- Niraparib Maintenance PSOC (2017)
- Olaparib + Bevacizumab HRD+ 1-L Maintenance (2020)
- Olaparib gBRCAmut 1-L Maintenance (2020)
- Olaparib gBRCAmut/ sBRCAmut ROC (2016)
- Rucaparib gBRCAmut ROC (2016)
- Chemo + Bevacizumab PSOC (2016)
- Bevacizumab 1-L + Maintenance (2018)
- Chemo + Bevacizumab (2014) PROC
- Rucaparib Maintenance PSOC (2018)
- Pembrolizumab 1-L Maintenance (2020)
- Niraparib Maintenance (2020)
- Rucaparib Maintenance PSOC (2018)
- Olaparib gBRCAmut 1-L Maintenance (2018)
- Bevacizumab 1-L + Maintenance (2018)
- Pembrolizumab MSI/dMMR ROC (2017)
- Olaparib Maintenance PSOC (2017)
- Niraparib Maintenance PSOC (2017)
- Olaparib + Bevacizumab HRD+ 1-L Maintenance (2020)
- Olaparib gBRCAmut 1-L Maintenance (2020)
- Olaparib gBRCAmut/ sBRCAmut ROC (2016)
- Rucaparib gBRCAmut ROC (2016)
- Chemo + Bevacizumab PSOC (2016)
- Bevacizumab 1-L + Maintenance (2018)
- Chemo + Bevacizumab (2014) PROC
- Rucaparib Maintenance PSOC (2018)
- Pembrolizumab 1-L Maintenance (2020)
- Niraparib Maintenance (2020)
- Rucaparib Maintenance PSOC (2018)
- Olaparib gBRCAmut 1-L Maintenance (2018)
- Bevacizumab 1-L + Maintenance (2018)
- Pembrolizumab MSI/dMMR ROC (2017)
- Olaparib Maintenance PSOC (2017)
- Niraparib Maintenance PSOC (2017)
- Olaparib + Bevacizumab HRD+ 1-L Maintenance (2020)
- Olaparib gBRCAmut 1-L Maintenance (2020)
- Olaparib gBRCAmut/ sBRCAmut ROC (2016)
- Rucaparib gBRCAmut ROC (2016)
- Chemo + Bevacizumab PSOC (2016)
- Bevacizumab 1-L + Maintenance (2018)
- Chemo + Bevacizumab (2014) PROC
- Rucaparib Maintenance PSOC (2018)
- Pembrolizumab 1-L Maintenance (2020)
- Niraparib Maintenance (2020)
- Rucaparib Maintenance PSOC (2018)
- Olaparib gBRCAmut 1-L Maintenance (2018)
- Bevacizumab 1-L + Maintenance (2018)
- Pembrolizumab MSI/dMMR ROC (2017)
- Olaparib Maintenance PSOC (2017)
- Niraparib Maintenance PSOC (2017)
- Olaparib + Bevacizumab HRD+ 1-L Maintenance (2020)
- Olaparib gBRCAmut 1-L Maintenance (2020)
- Olaparib gBRCAmut/ sBRCAmut ROC (2016)
- Rucaparib gBRCAmut ROC (2016)
- Chemo + Bevacizumab PSOC (2016)
- Bevacizumab 1-L + Maintenance (2018)
- Chemo + Bevacizumab (2014) PROC
- Rucaparib Maintenance PSOC (2018)
- Pembrolizumab 1-L Maintenance (2020)
- Niraparib Maintenance (2020)
- Rucaparib Maintenance PSOC (2018)
- Olaparib gBRCAmut 1-L Maintenance (2018)
- Bevacizumab 1-L + Maintenance (2018)
- Pembrolizumab MSI/dMMR ROC (2017)
- Olaparib Maintenance PSOC (2017)
- Niraparib Maintenance PSOC (2017)
- Olaparib + Bevacizumab HRD+ 1-L Maintenance (2020)
- Olaparib gBRCAmut 1-L Maintenance (2020)
- Olaparib gBRCAmut/ sBRCAmut ROC (2016)
- Rucaparib gBRCAmut ROC (2016)
- Chemo + Bevacizumab PSOC (2016)
- Bevacizumab 1-L + Maintenance (2018)
FDA ovarian cancer clinical trial endpoints workshop☆

Thomas J. Herzog a, Gwynn Ison b, Ronald D. Alvarez c, Sanjeeve Balasubramaniam b, Deborah K. Armstrong d, Julia A. Beaver e, Annie Ellis f, Shenhui Tang g, Peg Ford h, Amy McKee i, David M. Gershenson j, Geoffrey Kim b, Bradley J. Monk b, Richard Pazdur j, Robert L. Coleman k

a University of Cincinnati Cancer Institute, Dept. of Ob/Gyn, University of Cincinnati, United States
b Office of Hematology Oncology Products, OND, CDER, FDA, United States
c Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, United States
d Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, United States
e Division of Biometrics V, OR, OTS, CDER, FDA, United States
f Ovarian Cancer Alliance of San Diego, United States
g Department of Gynecologic Oncology & Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
h U.S. Oncology, Phoenix, AZ, United States
i Ovarian Cancer Center of Excellence, UMPT, FDA, United States
j Ovarian Cancer Survivor, White Plains, New York

ARTICLE INFO

Article history:
Received 6 July 2017
Received in revised form 5 August 2017
Accepted 8 August 2017
Available online xxx

Keywords:
Clinical trial endpoints
Ovarian cancer
Patient reported outcomes
Regulatory approval
Immunotherapy
Rare tumors
Endpoints & Study Settings

<table>
<thead>
<tr>
<th></th>
<th>Frontline</th>
<th>Platinum-Sensitive</th>
<th>Platinum-Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>Approve</td>
<td>Approve</td>
<td>Approve</td>
</tr>
<tr>
<td>PFS (Statistically significant) + Other (QoL/PRO)</td>
<td>Approve</td>
<td>Approve</td>
<td>Consider</td>
</tr>
<tr>
<td>PFS (Statistically significant) with clinically meaning MOE</td>
<td>Consider</td>
<td>Consider</td>
<td>Consider</td>
</tr>
<tr>
<td>Response Rate/CBR Overall- High grade serous</td>
<td>No</td>
<td>No</td>
<td>Consider</td>
</tr>
<tr>
<td>Response Rate/CBR Selected histologies (eg. Clear cell, Mucinous, Low grade serous)</td>
<td>Consider</td>
<td>Consider</td>
<td>Consider</td>
</tr>
</tbody>
</table>
Summary

• Recent regulatory meetings with FDA for BTD and AA have been remarkably consistent in guidance:
 – Population clarity, Efficacy benchmarks single agents & combinations, Duration of response definition & follow-up, Methodology of assessment (INV vs BICR), Sorting out relative contribution, Sample size for efficacy & safety for AA, Ph III full approval trial guidance (at AA application)

• In Gyn Onc AA process has been effective
• Dec 1, 2021 Minisymposium with FDA on AA in Gyn Onc
• Expect more regulation on confirmatory trial
Thank You!

thomas.herzog@uc.edu

therzog@gog.org