Role of ADCs in Ovarian Cancer

David O'Malley, M.D.

Professor

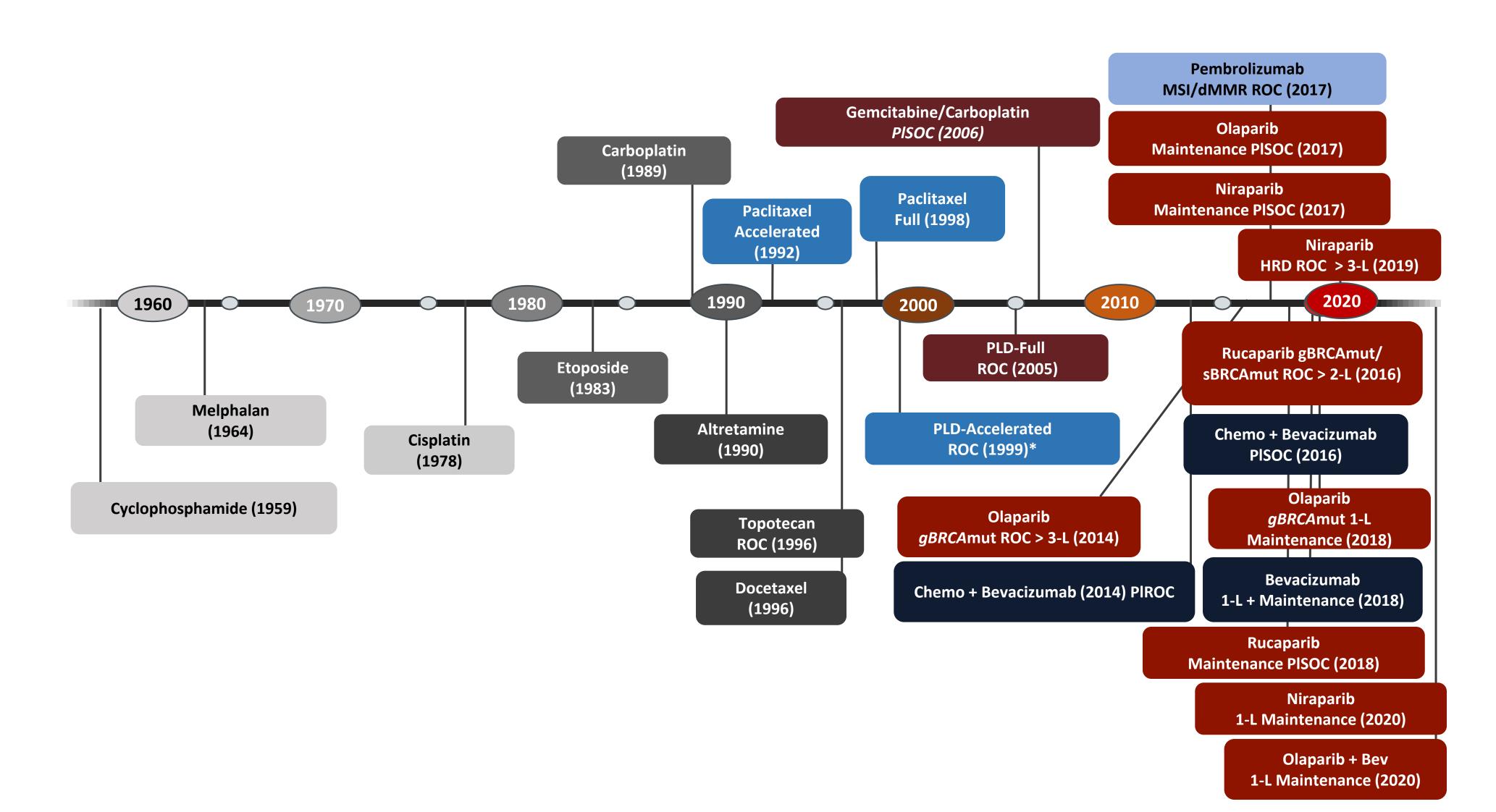
Director, Division of Gynecologic Oncology

The Ohio State University and the James Cancer Center

Clinical Trial Advisor (Ovarian Cancer) GOG-Partners

VERBAL DISCLOSURE – 3 years

- Dr. OMalley reports personal fees (consulting and/or advisory boards) and funding for clinical research from AstraZeneca, personal fees (consulting and/or advisory boards) and funding for clinical research from Immunogen, personal fees (consulting and/or advisory boards) from Ambry, personal fees (consulting and/or advisory boards) and funding for clinical research from Janssen/J&J, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fees (consulting and/or advisory boards) and funding for clinical research from Abbvie, personal fe and/or advisory boards) and funding for clinical research from Regeneron, personal fees (consulting and/or advisory boards) and funding for clinical research from Amgen, personal fees (consulting and/or advisory boards) and funding for clinical research from Novocure, personal fees (consulting and/or advisory boards) and funding for clinical research from Genentech/Roche, funding for clinical research from VentiRx, funding for clinical research from Array Biopharma, funding for clinical research from EMD Serono, funding for clinical research from Ergomed, funding for clinical research from Ajinomoto Inc., funding for clinical research from Ludwig Cancer Research, funding for clinical research from Stemcentrx, Inc, funding for clinical research from CERULEAN PHARMA, personal fees (consulting and/or advisory boards) and funding for clinical research from GOG Foundation, funding for clinical research from Bristol-Myers Squibb Co, funding for clinical research from New Mexico Cancer Care Alliance, funding for clinical research from INC Research, Inc, funding for clinical research from inventiv Health Clinical, personal fees (consulting and/or advisory boards) and funding for clinical research from Iovance, funding for clinical research from PRA Int., personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from Iovance, funding for clinical research from PRA Int., personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from Iovance, funding for clinical research from PRA Int., personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from Iovance, funding for clinical research from PRA Int., personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from Iovance, funding for clinical research from PRA Int., personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from Iovance, funding for funding for clinical research from PRA Intl, personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from PRA Intl, personal fees from Myriad Genetics, personal fees (consulting and/or advisory boards) and funding for clinical research from Eisai, personal fees and funding for clinical research from Agenus, personal fees from Tarveda, personal fees (consulting and/or advisory boards) and funding for clinical research from Merck, funding for clinical research from ReaGen, personal fees (consulting and/or advisory boards) from Novartis, personal fees (consulting and/or advisory boards) and funding for clinical research from Mersana, personal fees (consulting and/or advisory boards) and funding for clinical research from Clovis, personal fees from Rubis, personal fees (consulting and/or advisory boards) from Toray; personal fees (consulting and/or advisory boards) from INXMED; personal fees (consulting and/or advisory boards) from Sorrento; personal fees (consulting and/or advisory boards) from Roche Diagnostics; personal fees (consulting and/or advisory boards) from Sorrento; personal fees (consulting and/or advisory boar Sorrento; pérsonal fees (consulting and/or advisory boards) from Corcept Therapeutics; personal fees (consulting and/or advisory boards) from Celsion Corp
- I serve as Clinical Trial Advisor (Ovarian Cancer) for GOG Partners and am on the GOG Foundation BOD


Agenda

- Background
- Targets
 - NaPi2b
 - Lifastuzumab (LIFA)
 - Upifitamab rilsodotin (UpRi):
 - Folate receptor alpha
 - STRO-002
 - MORAb-202
 - Mirvetuximab soravtansine (Mirv)

FDA-Approved Drugs for Ovarian Cancer

12+ Approvals since Nov 2014

More approvals in the last 6 years than the prior 60 years combined

Target Antigens

Target antigen	Function	Expression	ADC
Folate receptor alpha	Transmembrane protein involved in transport of folate	Ovarian: 80-96%	Mirvetuximab soravtansine
	into cells necessary for metabolism, DNA synthesis,		STRO-002
	repair, and proliferation	Endometrial: 41%	MORAb-202
NaPi2b	Sodium-dependent phosphate transport protein expressed in epithelial cells.	Ovarian: 80-100%	Lifastuzumab vedotin XMT-1536
Tissue Factor	Thromboplastin or factor III, involved in extrinsic coagulation pathway leading to generation of	Ovarian: 96%	Tisotumab vedotin
	thrombin/clot formation.	Endometrial: 15%	
		Cervical: 34%	
Mesothelin	Hypothesized to be involved in cell adhesion.	Ovarian: 60-88%	Anetumab ravtansine
	Expressed on mesothelial cells.		DMOT4039A
			BMS-986148
MUC16	Transmembrane protein with role in	Ovarian: 80%	DMUC4064A
	adhesion/peritoneal metastases. CA-125 represents		
	the extracellular, cleaved portion.		

Calo CA, O'Malley DM. Antibody-drug conjugates for the treatment of ovarian cancer. Expert Opin Biol Ther. 2020 Jun 8:1-13. doi: 10.1080/14712598.2020.1776253. Online ahead of print. PMID: 32463296

(ImmunoGen, Inc)		DM4)			
	Humanized IgG1 (M9346A)				
		Microtubule inhibitor			
STRO-002 (Sutro Biopharma,	Folate receptor α	Proprietary 3-aminophenyl	Proprietary cleavable	4	Phase I dose
Inc.)		hemiasterlin agent: SC209	linker: SC239		escalation/
	Human anti-FRα IgG1 antibody				expansion ongoing
	(SP8166)	Proprietary tubulin-targeting			
		payload			
MORAb-202 (Eisai Inc.)	Folate receptor α	Eribulin mesylate	Cathepsin B-cleavable	4	Phase I ongoing
(2.001.11.01)			linker	•	
(NCT03386942)	Humanized anti-human FRα	Microtubule inhibitor			
	farletuzumab				
XMT-1536	NaPi2b	Proprietary auristatin	Proprietary hydrophilic	10-12	Phase I dose
(Mersana Therapeutics)		derivative (auristatin F-HPA)	polymer scaffold		escalation/ expansion
	Humanized monoclonal antibody				ongoing
(NCT03319628)	(SLC34A2)	Microtubule inhibitor			
Lifastuzumab vedotin	NaPi2b	MMAE	Cleavable	3-4	Randomized phase II
(LIFA/DNIB0600A)	INAFIZU	IVIIVIAL	maleimidocaproyl-valyl-	J-4	completed; further
(Genentech, Inc.)	Humanized monoclonal antibody	Microtubule inhibitor	citrullinyl-p-		development
	(SLC34A2)		aminobenzyloxycarbonyl		discontinued
	()		(mc-val-cit-PABC)		
Calo CA, O'Malley DM. Antibody-drug co	njugates for the treatment of ovarian cancer. Expert	Opin Biol Ther. 2020 Jun 8:1-13. doi: 10.108	,	d of print. PMID:	32463296

Cytotoxic Payload and

mechanism of action

Soravtansine (Maytansinoid

ADC

Mirvetuximab soravtansine

Target Antigen/

Folate receptor α

Antibody

Linker

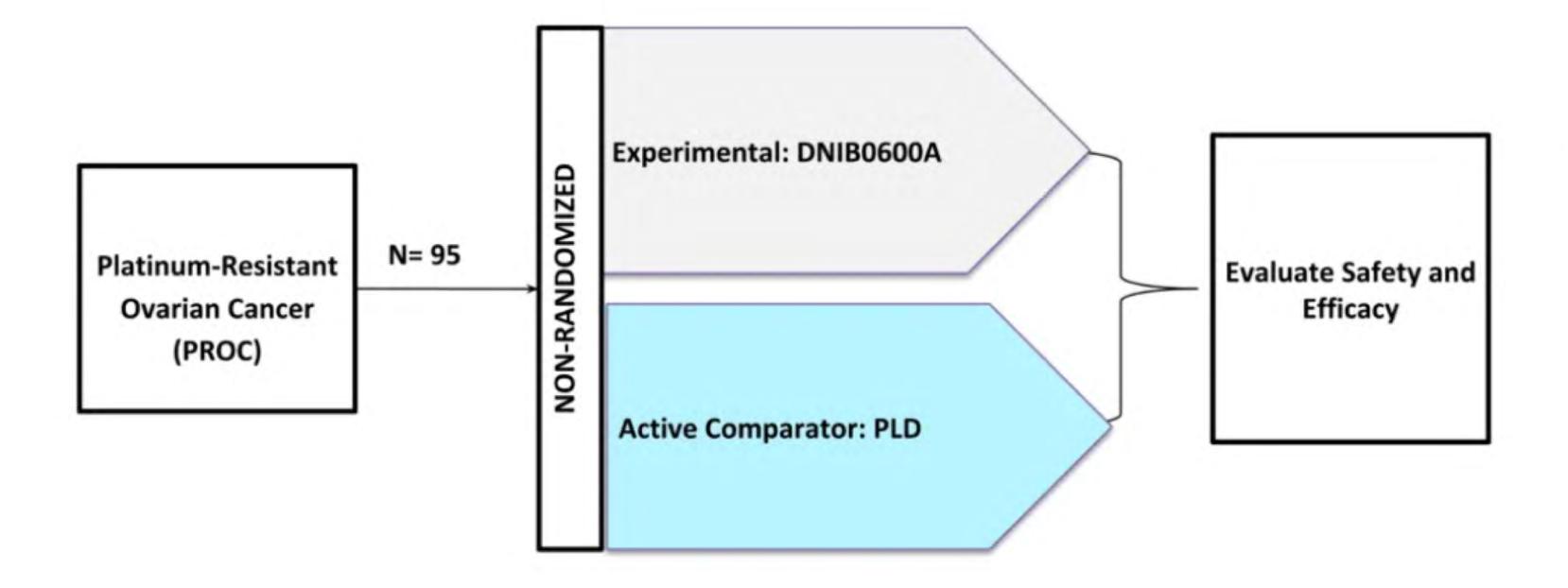
Sulfo-PDB

DAR

3-4

Phase of

Phase III


development

ADC	Target Antigen/	Cytotoxic Payload and	Linker	DAR	Phase of
	Antibody	mechanism of action			development
Tisotumab vedotin (HuMax-TF-	Tissue factor	MMAE	Protease cleavable valine-		Phase II ongoing;
ADC; TF011-MMAE)			citrulline linker		Phase III in cervical
(Seattle Genetics, Inc.)	Fully human monoclonal antibody	Microtubule inhibitor			cancer ongoing
Anetumab ravtansine (BAY 94-9343)	Mesothelin	Ravtansine/ DM4	Sulfo-PDB	3.2	Phase II ongoing
(Bayer)	Fully human IgG1 (MF-T)	Microtubule inhibitor			
DMOT4039A (RG7600) (Genentech, Inc.)	Mesothelin	MMAE	Protease cleavable valine- citrulline linker	3.5	Phase II
	Humanized IgG1 antibody (h7D9.v3)	Microtubule inhibitor			
BMS-986148	Mesothelin	Duocarmycin-related	Protease cleavable valine-	1.4	Phase I/IIa ongoing
(Bristol-Myers Squibb)			citrulline linker		
	Fully human IgG1 monoclonal antibody	DNA alkylation			
Sofituzumab vedotin	MUC16	MMAE	Protease cleavable valine-	3.5	Phase I completed;
(DMUC5754A)			citrulline linker		further development
(Genentech, Inc.)	Humanized IgG1 monoclonal antibody	Microtubule inhibitor	(maleimidocaproyl-valine-citrulline-p-		discontinued
	·		aminobenzyloxycarbonyl)		
Anti-MUC16 TDC	MUC16	MMAE	Cysteine-engineered	2	Phase I completed
(DMUC4064A)			THIOMAB TM		
(Genentech, Inc.)	Humanized anti-MUC16 IgG1	Microtubule inhibitor			
NCT02146313	Calo CA, O'Malley DM. Antibody-drug conjug	gates for the treatment of ovarian cancer. Expert	Opin Biol Ther. 2020 Jun 8:1-13. doi: 10	.1080/14712598.20	020.1776253. Online ahead of

NaPi2b

RPh2 Lifastuzumab vs. PLD

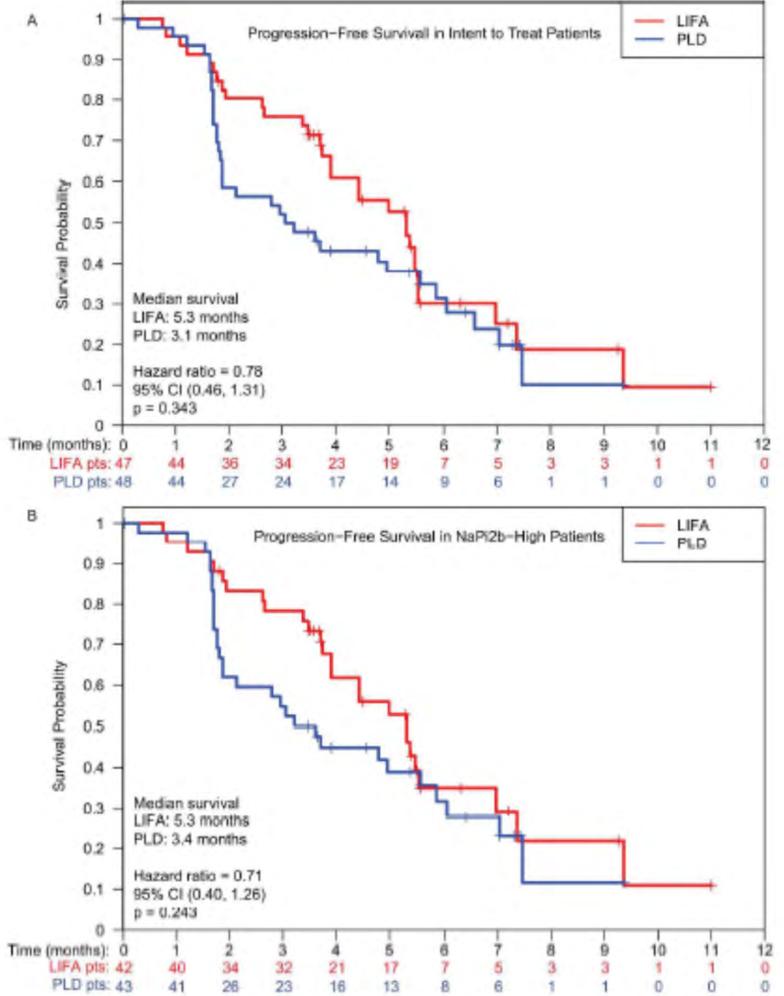
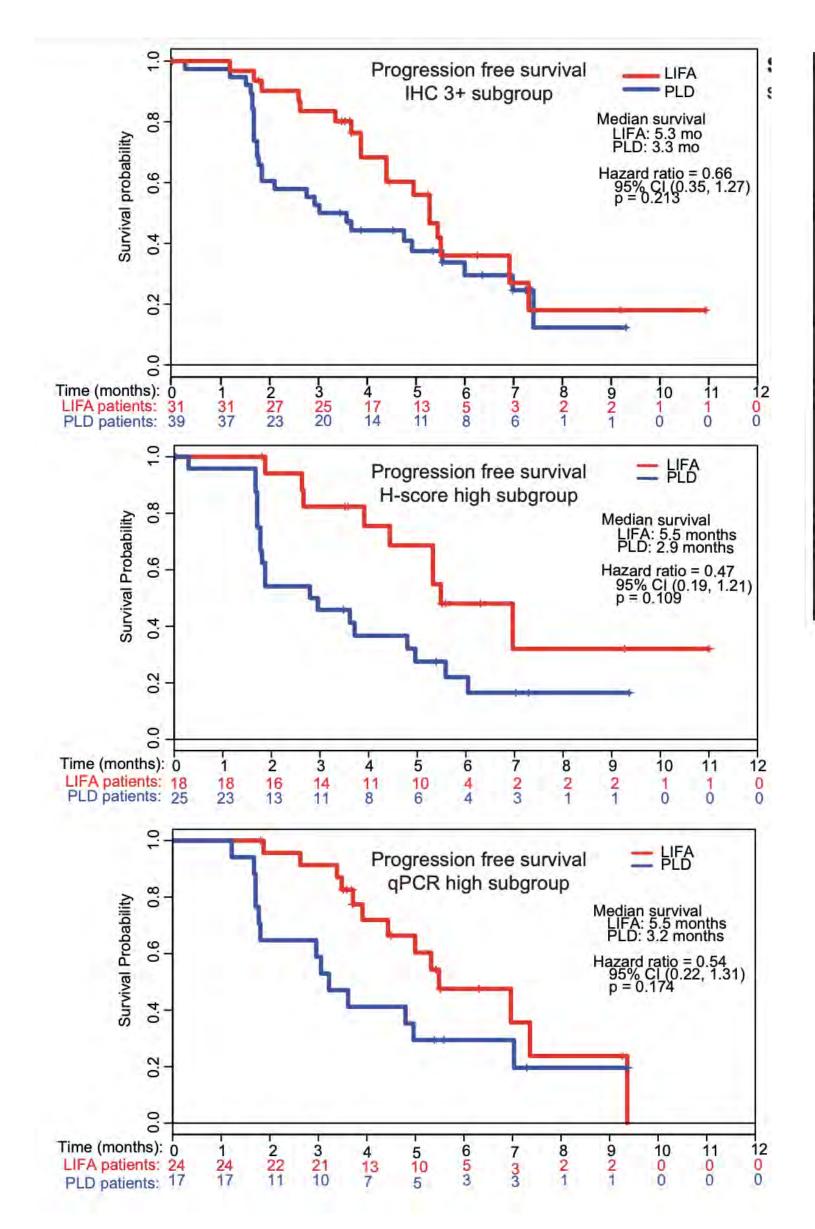
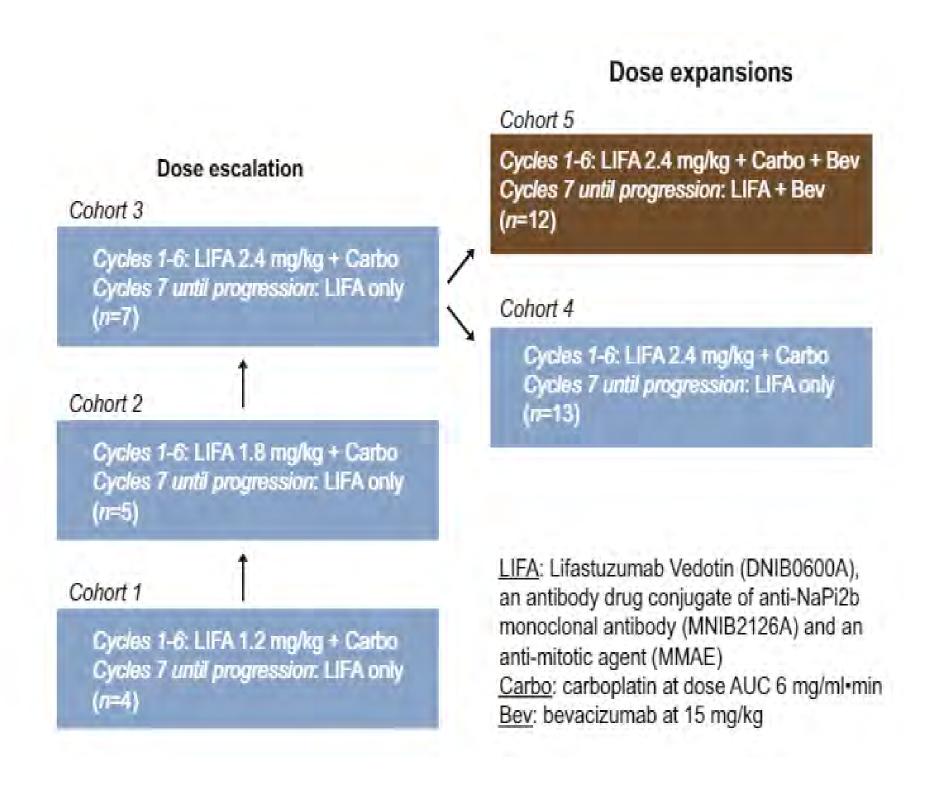


Figure 1. Progression-free survival in intent to treat and NaPi2b-high populations.

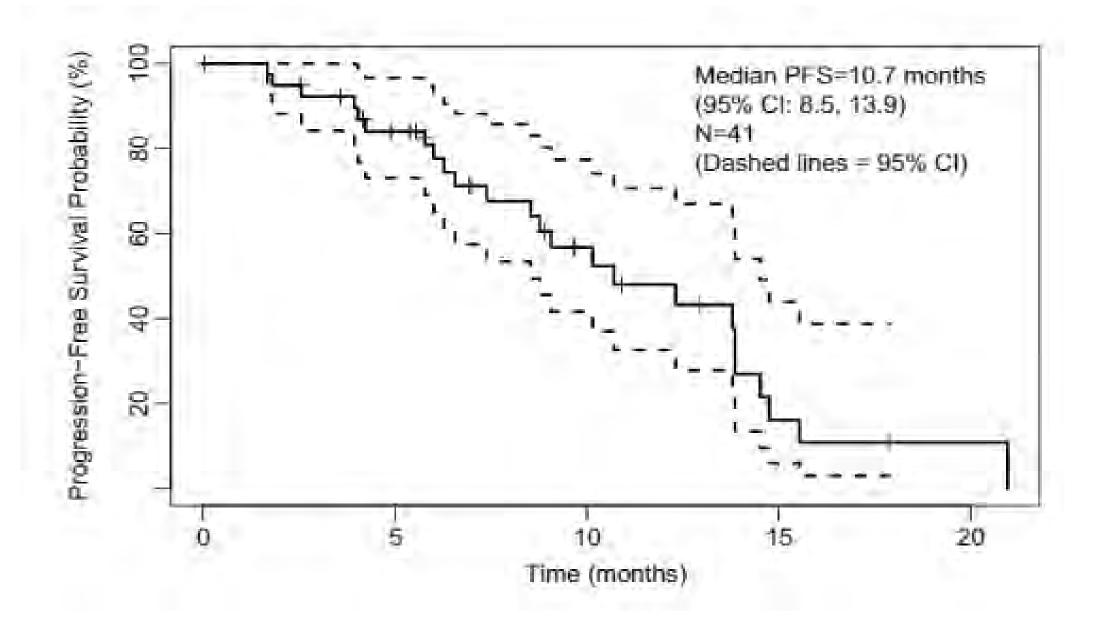

HR for stratified PFS was 0.78 (95% CI 0.46-1.31; p=0.34)

RPh2 Lifastuzumab vs. PLD Efficacy and Safety

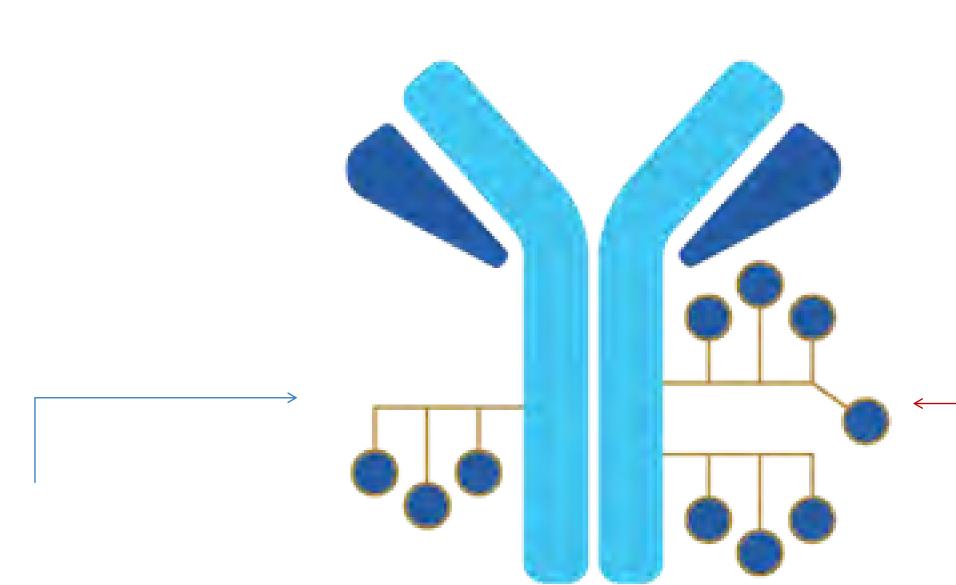
	Lifastuzumab	PLD
ORR	34% (95% CI 22-49%)	15% (95% CI 7-28%)
Grade 3 AEs	46%	51%
SAEs	30%	30%
AEs leading to discontinuation	9%	8%
Grade ≥ 2 neuropathy	11%	4%


LIFA – Biomarker Subsets

Group		T 95)	11.54	b 2/3+ 85)	993-533	2b 3+ 70)	H-scor	median e high 43)	qPCF	median R high 41)
Arm	LIFA n=47	PLD n=48	LIFA n=42	PLD n=43	LIFA n=31	PLD n=39	LIFA n=18	PLD n=25	LIFA n=24	PLD n=17
ORR	34%	15%	36%	14%	42%	13%	44%	8%	50%	6%
Median PFS (months)	5.3	3.1	5.3	3.4	5.3	3.3	5.5	2.9	5.5	3.2
HR	0.78	(0.34)	0.71	(0.24)	0.66	(0.21)	0.47	(0.11)	0.54 (0	0.0174)


- NaPi2b membranous staining level was scored according to the following algorithm, where at least 50% of tumor cells had to be stained in order to qualify as positive in each category
- NaPi2b H score: $[1 \times (\% \text{ cells } 1+) + 2 \times (\% \text{ cells } 2+) + 3 \times (\% \text{ cells } 3+)]$
- NaPi2b transcript levels in the tumor tissues were also determined by qRT-PCR using a validated NaPi2b/TMEM (house-keeping gene) duplex assay (Cobas z480 Real-time PCR Platform), (Roche Molecular Systems, Pleasanton, CA)

Phase Ib Lifastuzumab plus carboplatin in platinum sensitive recurrent ovarian cancer



Best Response	All Patients N=41 N (%)
CR	24 (59)
PR	6 (15)
SD	13 (32)
PD	2 (5)
UE	2 (5)

ORR 74%

XMT-1536 (upifitamab rilsodotin; UpRi): : NaPi2b Dolaflexin ADC

Dolaflexin

Improved therapeutic index vs other platforms

- Polymer scaffold
- High Drug to Antibody Ratio (DAR) ~10-12
- Excellent drug like properties

DolaLock Payload

Efficacy without severe neutropenia, neuropathy, or ocular toxicity

- Novel auristatin
- Controlled bystander effect
- Selectively toxic to rapidly dividing cells
- Not a PgP substrate
- Induces immunogenic cell death

Design for the Ovarian Cancer Cohort of the XMT-1536 (UpRi) Phase 1 Expansion Study

Ovarian Cancer Cohort

- 1-3 prior lines in platinum resistant
- 4 prior lines regardless of platinum status
- High grade serous histology
- Archived tumor and fresh biopsy (if medically feasible) for NaPi2b
- Exclusion: primary platinumresistant defined as lack of response or disease progression within 3 mos after completing front-line platinum containing

Abbreviations: mos = months; EXP = expansion;
RECIST = Response Evaluation Criteria in Solid Tumors;
ECOG = Eastern Cooperative Oncology Group; MTD =
maximum tolerated dose; ORR = objective response
rate; DCR = disease control rate; DOR = duration of
response

¹Tolcher TW et al. J Clin Oncol 37, 2019 (suppl; abstr 3010) ²Richardson DL et al. Presented at SGO Annual Meeting 2020; LBA8

³ **Hamilton E et al.** Presented during the 2020 <u>European Society of Medical Oncology</u> (ESMO) Virtual Congress

Patient population: High grade serous ovarian cancer (including fallopian tube and primary peritoneal cancer) progressing after standard treatments

- Measurable disease per RECIST v1.1
 - ECOG Performance Status 0 or 1

Dosing: IV every 4 weeks until disease progression or unacceptable toxicity

- 36 mg/m2 cohort initiated in August 2019 and enrollment closed
- 43 mg/m2 cohort initiated in December 2019 and ongoing; current dose evaluated in EXP

Primary Objectives:

- Evaluate safety and tolerability of MTD
- Assess preliminary efficacy (ORR, DCR)

Secondary Objectives:

- Association of tumor NaPi2b expression and objective tumor response using an immunohistochemistry (IHC) assay with a broad dynamic range to distinguish tumors with higher and lower NaPi2b expression (as previously reported^{1,2,3})
 - Further assessment of preliminary anti-neoplastic activity (DOR)

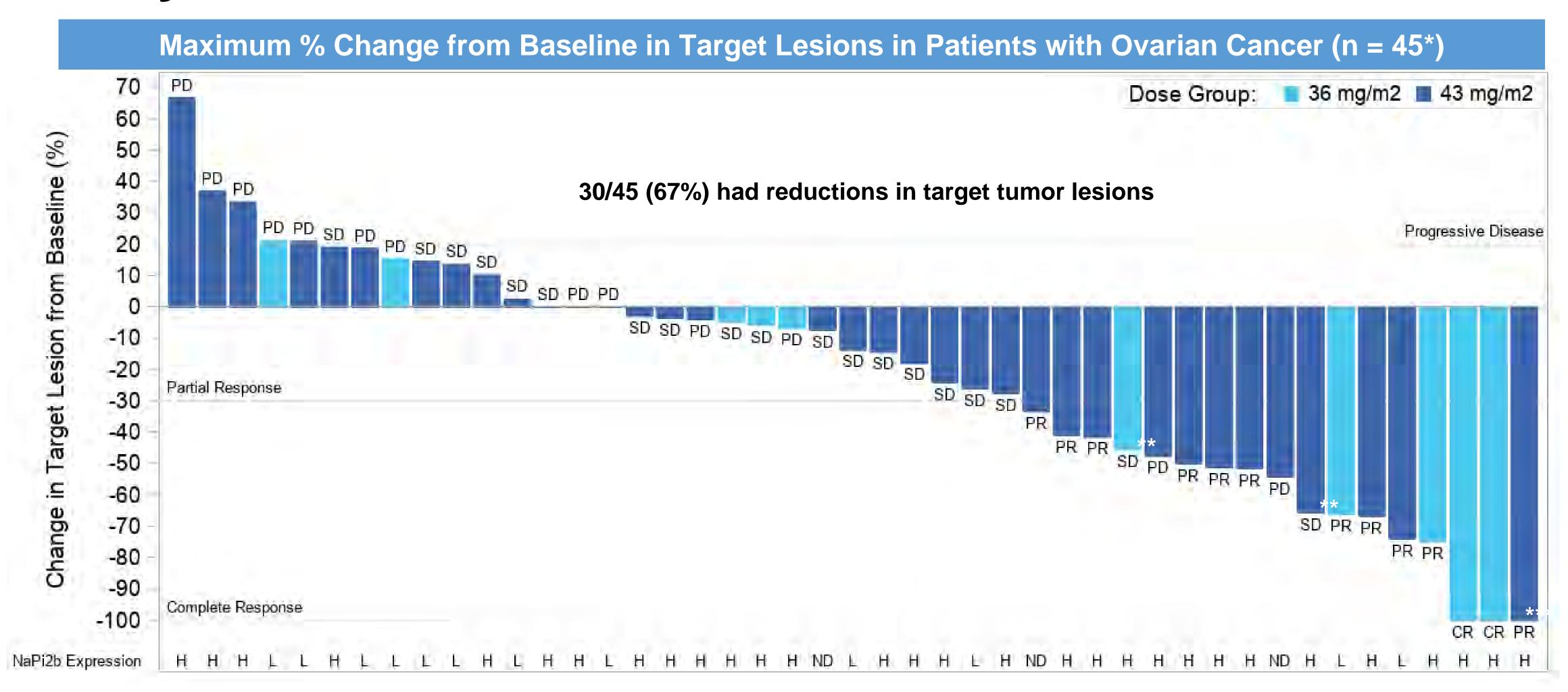
Assessments:

 Tumor imaging (MRI or CT): baseline and every 2nd cycle; response assessed per RECIST v1.1

Efficacy

Best Response in Evaluable	e Patients with Ovaria	n Cancer (n = 47)		
	AII (n = 47)	Higher NaPi2b ⁰ (n = 31)	Lower NaPi2b ⁰⁰ (n = 13)	NaPi2b Not Yet Determined (n = 3)
CR; n(%)	2 (4)	2 (6)	0	0
PR; n(%)	11 (23)	8 (26)	2 (15)	1 (33)
SD; n(%)	19 (40)	13 (42)	5 (38)	1 (33)
PD; n(%)	15 (32)	8 (26)	6 (46)	1 (33)
ORR; n (%)	13 (28)	10 (32)	2 (15)	1 (33)
DCR; n (%)	32 (68)	23 (74)	7 (54)	2 (67)

All Responses are Confirmed

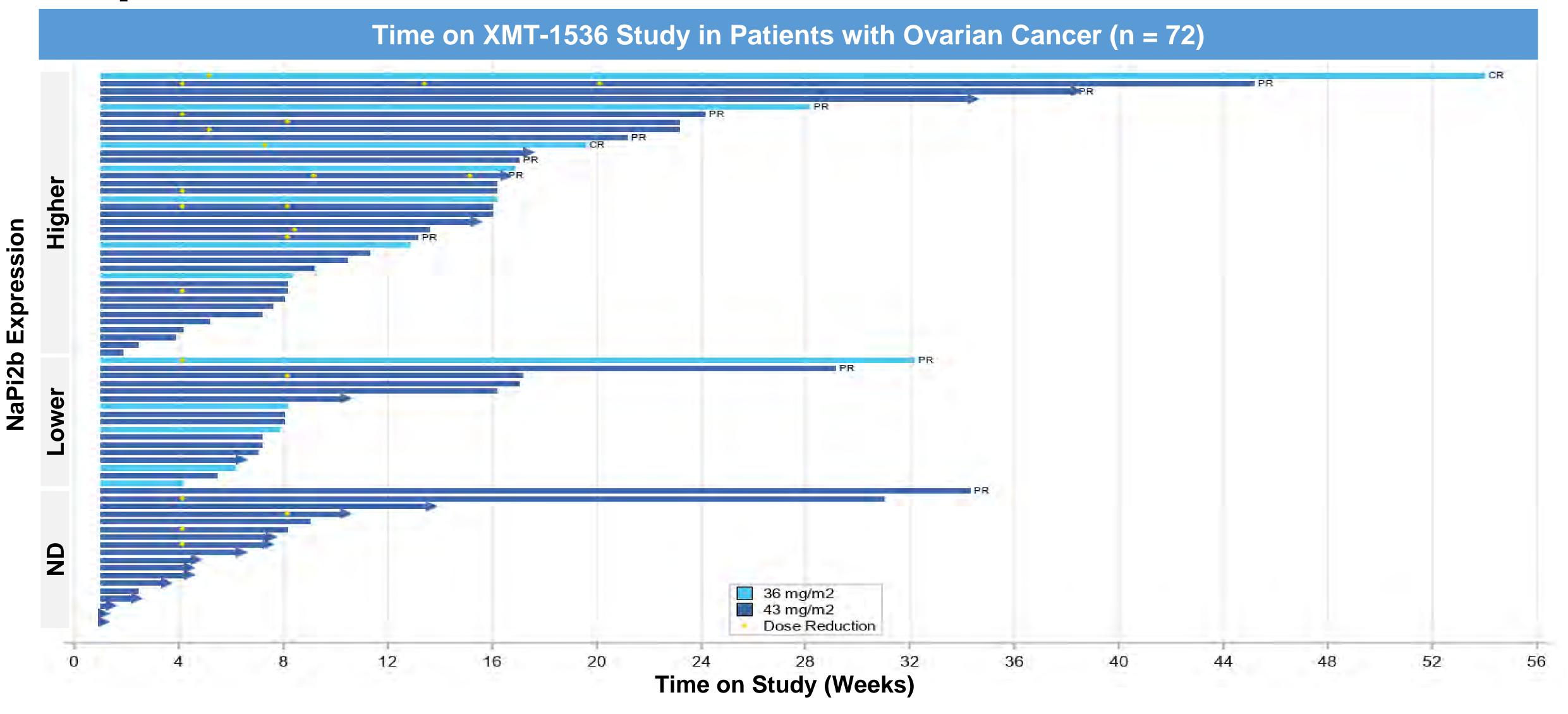

*25 patients were not evaluable for RECIST response: 10 patients discontinued prior to first scans: 1 clinical progression; 1 related SAE (G5 pneumonitis); 3 unrelated SAEs; 5 withdrew consent; 15 patients did not yet have RECIST assessment as of the data cut

O Higher NaPi2b Expression: defined in dose escalation as at / above lowest H-score at which response observed (≥110)

OO Lower NaPi2b Expression: defined in dose escalation as below the lowest H-score at which response observed (<110)

²Richardson DL et al. Presented at SGO Annual Meeting 2020;

Efficacy


^{* 2} patients not included in waterfall plot as tumor measurement data missing in the database as of data cut; both patients had BOR of PD due to new lesions

** Unconfirmed response, BOR per RECIST v1.1 is SD

*** CR of target lesions and non-CR/non-PD of non-target lesions, BOR per RECIST v1.1 is PR

H = Higher NaPi2b Expression; L = Lower NaPi2b Expression; ND = NaPi2b Expression not yet determined or tissue not available

Clear Trend to Longer Time on Study with Higher NaPi2b Expression

Abbreviations: CR = complete response; PR = partial response; H = Higher NaPi2b Expression; L = Lower NaPi2b Expression; ND = NaPi2b Expression not yet determined or tissue not available

²Richardson DL et al. Presented at SGO Annual Meeting 2020;

Updated

Best Response in Evaluable Patients with Ovarian Cancer (n = 75)

	NaPi2b High (TPS≥75)	NaPi2b Low (TPS<75)	Not Yet Determined NaPi2b	All Patients
N	38	23	14	75
CR	2 (5)	0	0	2 (3)
PR	11 (29)	2 (9)	2 (14)	15 (20)
uPR	1 (3)	0	2 (14)	3 (4)
SD	19 (50)	8 (35)	7 (50)	34 (45)
PD	5 (13)	13 (57)	3 (21)	21 (28)
Confirmed ORR	13 (34)	2 (9)	2 (14)	17 (23)
DCR	33 (87)	10 (43)	11 (79)	54 (72)

Data Cut: June 10, 2021

GOG 3048 UPLIFT: Single-Arm US Registration Strategy in Platinum Resistant Ovarian Cancer

UPLIFT Design

Platinum-Resistant High-Grade Serous Ovarian Cancer

- N=~100 Higher NaPi2b, up to ~180 Overall
 - 1-4 prior lines
- Prior bevacizumab not required for patients with 3
 4 prior lines
- No exclusion for baseline peripheral neuropathy
 - Enrolling regardless of NaPi2b expression

Primary Endpoint: Confirmed ORR in higher NaPi2b

Key Secondary Endpoint: Confirmed ORR in overall population

Other Secondary Endpoints: Duration of Response; Safety

Dose: 43 mg/m² IV q28d

Global: US, Europe, Australia, Canada

GOG 3048 UPLIFT: Single-Arm US Registration Strategy in Platinum Resistant Ovarian Cancer

UPLIFT Design

Platinum-Resistant High-Grade Serous Ovarian Cancer

N=~100 Higher NaPi2b, up to ~180 Overall

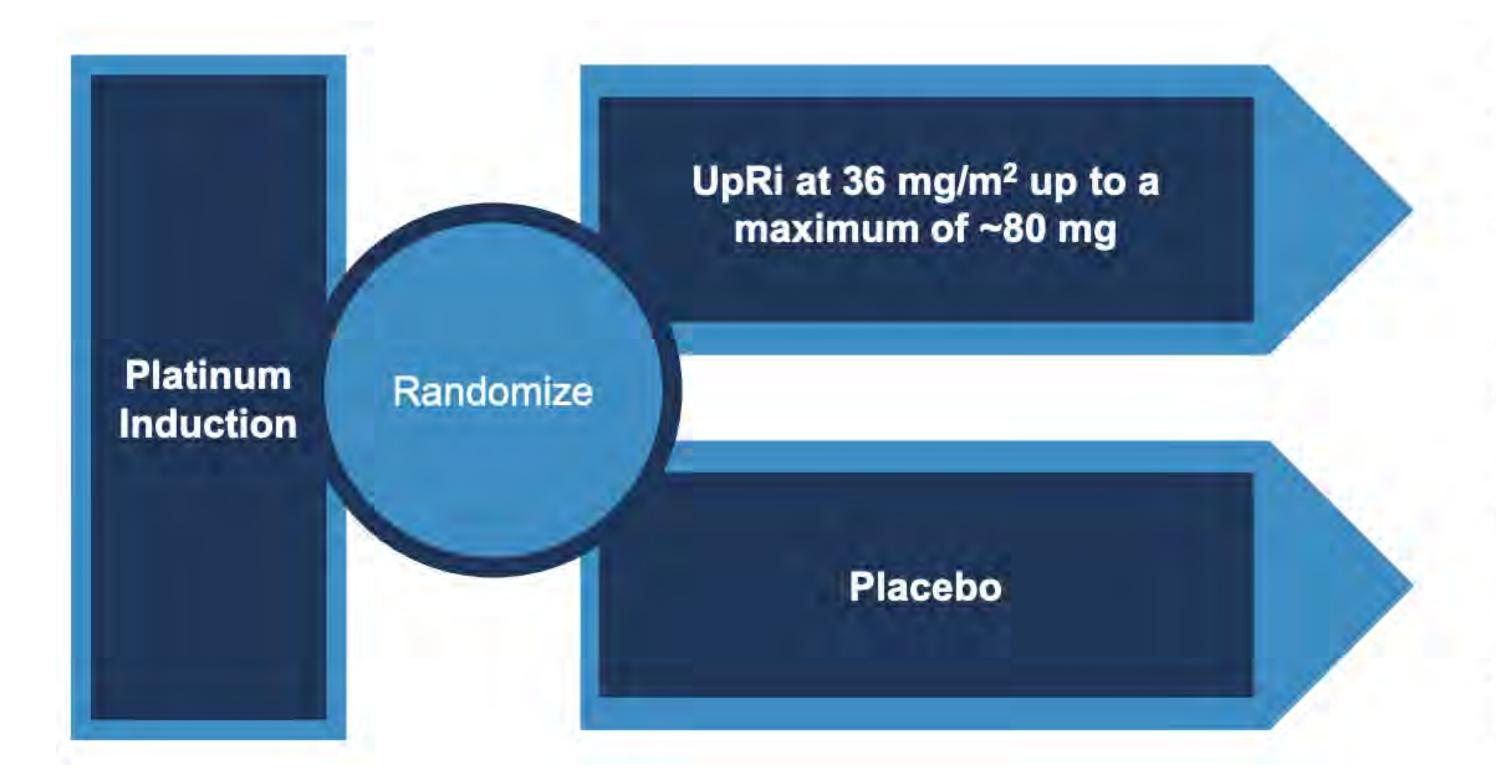
• 1-4 prior lines

Primary Endpoint: Confirmed ORR in higher NaPi2b

Key Secondary Endpoint: Confirmed ORR in overall

Prior bev

New UPLIFT Dose: 36 mg/m2 up to a maximum of 80 mg


- No exclusion for baseline peripheral neuropathy
 - Enrolling regardless of NaPi2b expression

Duration of Response; Safety

Dose: 43 mg/m² IV q28d

Global: US, Europe, Australia, Canada

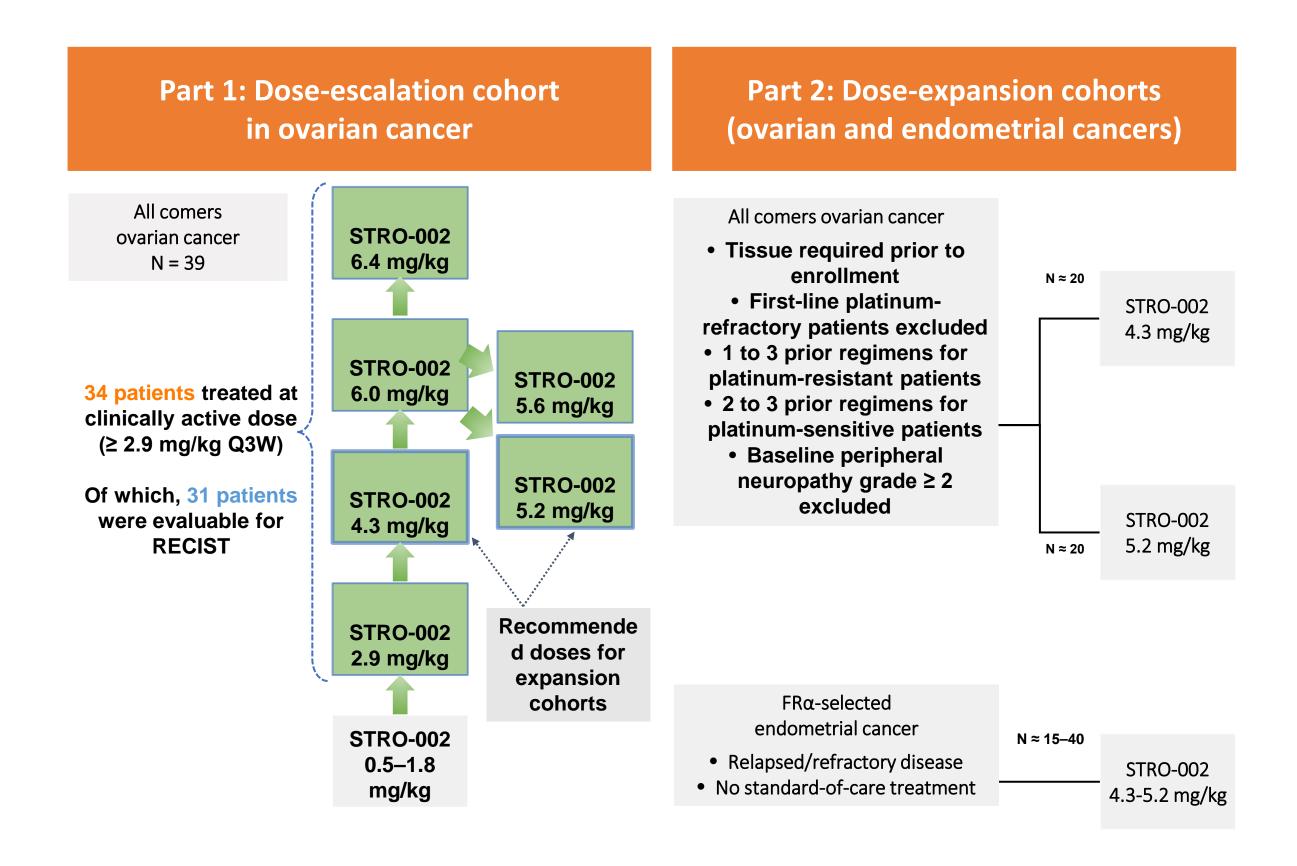
UP-NEXT GOG-3049

Key Enrollment Criteria:

- Platinum-sensitive recurrence, following platinum induction
- NaPi2b High biomarker selection by TPS>75
- 1 3 prior platinum-based regimes
- Prior PARPi therapy allowed, but only required for BRCAmut
- SD in addition to CR/PR as best response following platinum induction

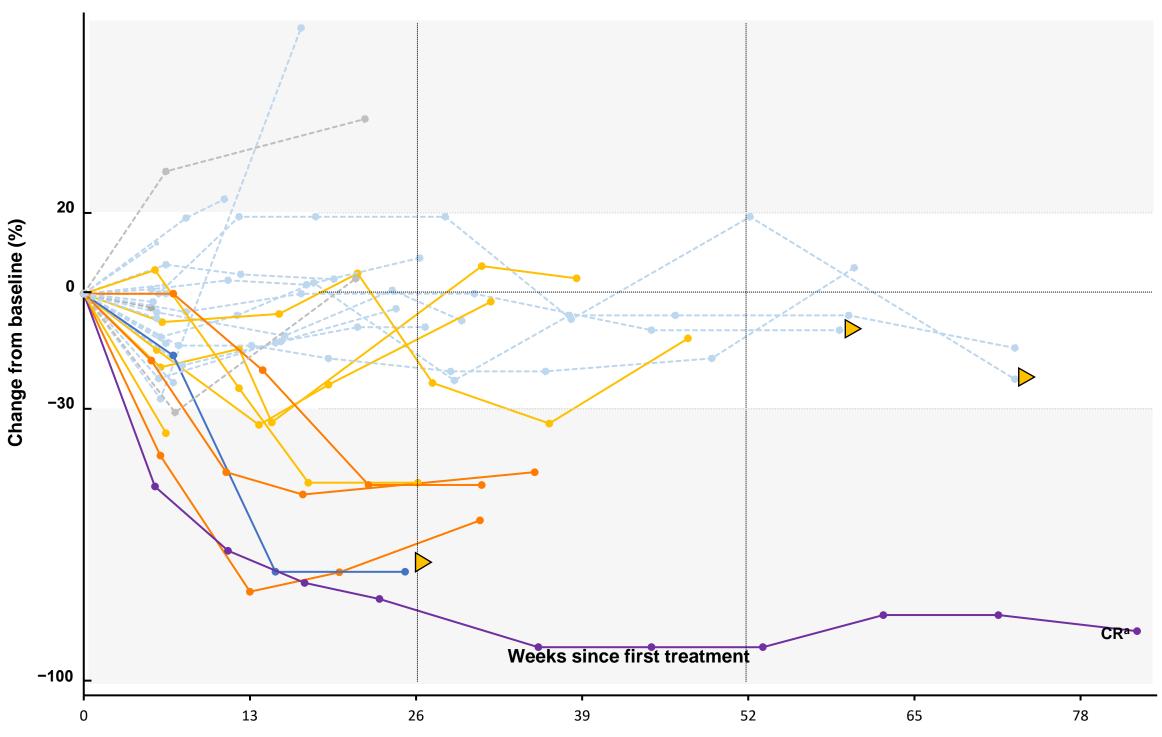
Primary Endpoint:

- PFS


Final Design Pending CHMP Scientific Advice Plans to Initiate in 2022

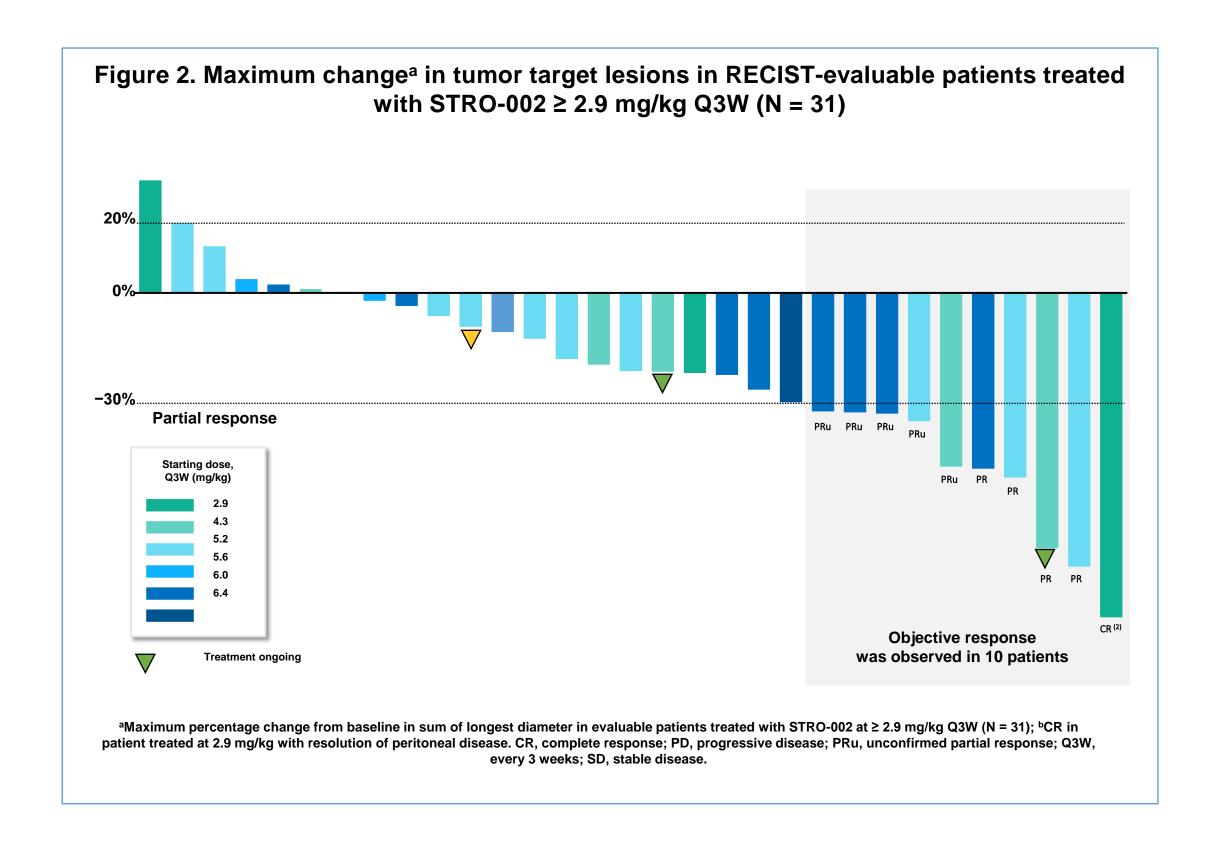
PI: Deb Richardson, M.D. https://ir.mersana.com/static-files/f50f16b7-c8bf-4268-903c-8f9860ccc3f5

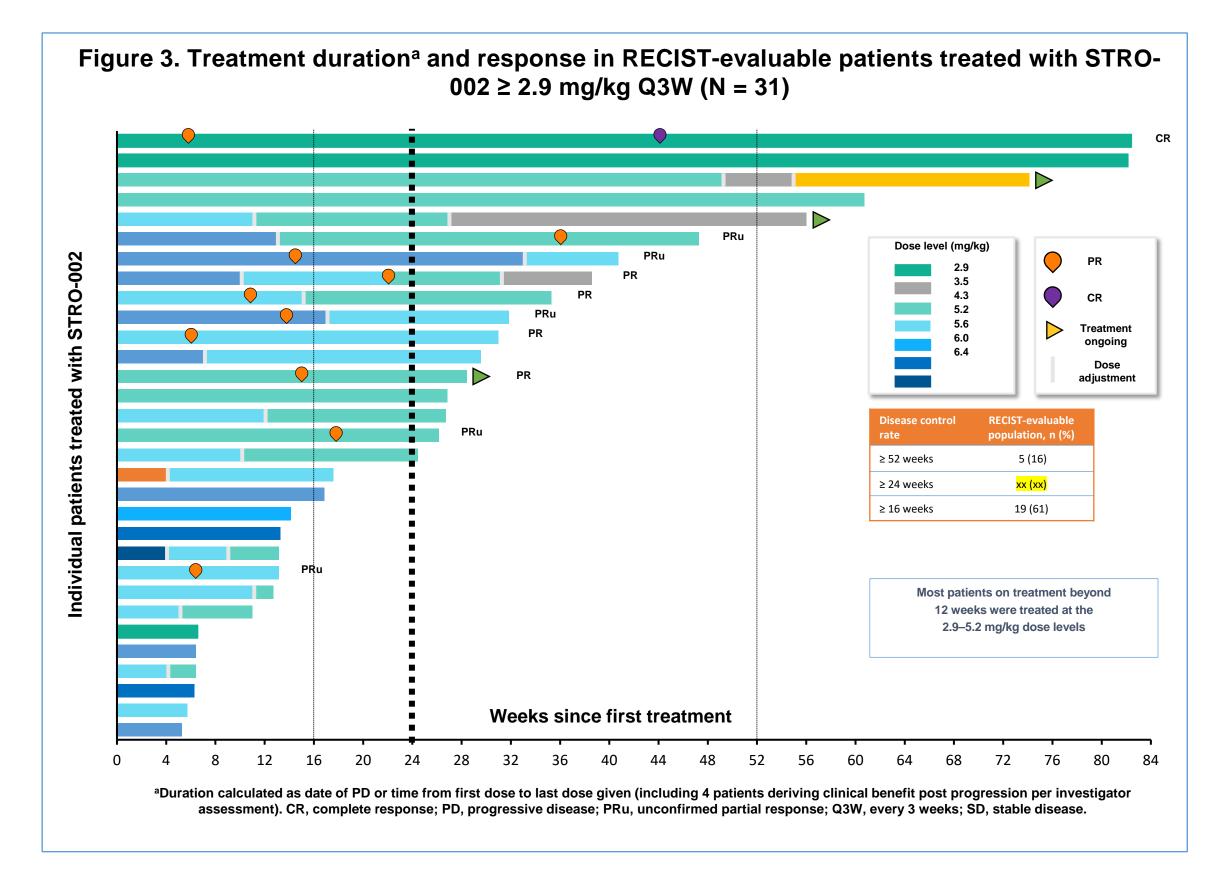
Folate Receptor Alpha



Sutro

Key endpoints: Safety (DLTs and TEAEs), ORR, PK profile, DOR, PFS¹, OS¹, Biomarkers


R. Wendel Naumann et al ASCO 2021



^aCR in patient treated at 2.9 mg/kg with resolution of peritoneal disease. CR, complete response; PD, progressive disease; PRu, unconfirmed partial response; Q3W, every 3 weeks; SD, stable disease.

FOLR1 PS2+	Weak/absent	Moderate	High
score:	expression	expression	expression
PR	1	1	0
PRu	2	0	1
SD	5	2	3
PD	2	0	0

Sutro

Objective response per RECIST v1.1	RECIST-evaluable population (N = 31)
Responders	10
CRb	1
PR	9
Confirmed	4
Unconfirmed	5
SD	18
PD	3

R. Wendel Naumann et al ASCO 2021

ORR by TPS Expression Levels (Total Samples N=33)

			C		
TPS	Overall	TPS ≤ 25%	TPS > 25%	TPS > 50%	TPS > 75%
ORR	33.3%	12.5%	40.0%	42.1%	43.8%
Number of patient samples	N=33	N=8	N=25	N=19	N=16
PR ⁽¹⁾	11	1	10	8	7
Potential Market Size (%)	100%	~ 30%	~ 70%		

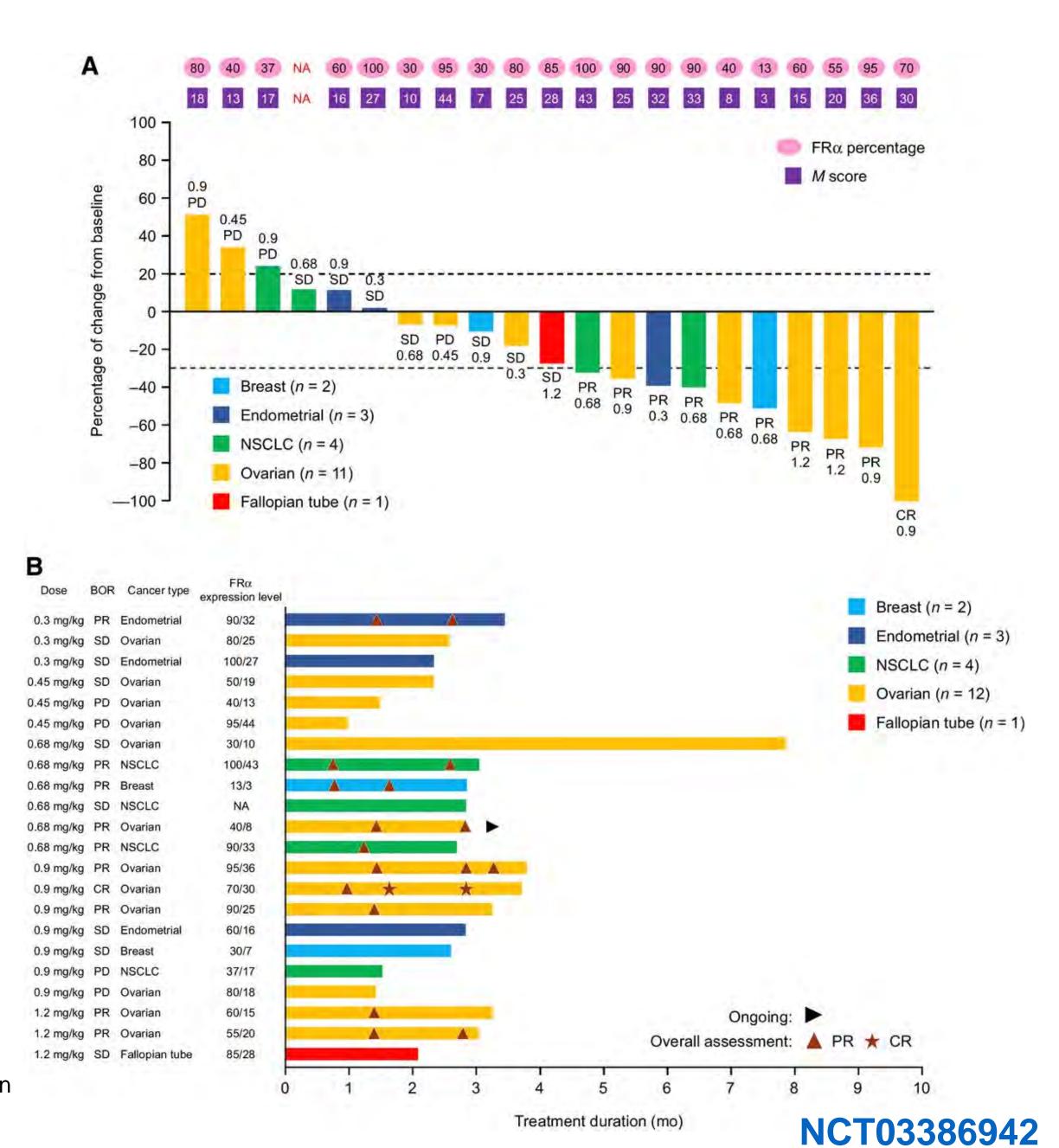
Patients at the 5.2 mg/kg starting dose and TPS > 25% demonstrated 53.8% ORR (n=13)

ORR by TPS Expression Levels (Total Samples N=33)

TPS	Overall	TPS ≤ 25%	TPS > 25%	TPS > 50%	TPS > 75%
ORR	33.3%	12.5%	40.0%	42.1%	43.8%
Number of patient	N=33	N=8	N=25	N=19	N=16

August 18, 2021

Sutro Biopharma Announces STRO-002 FDA Fast Track Designation for Patients with Advanced Ovarian Cancer

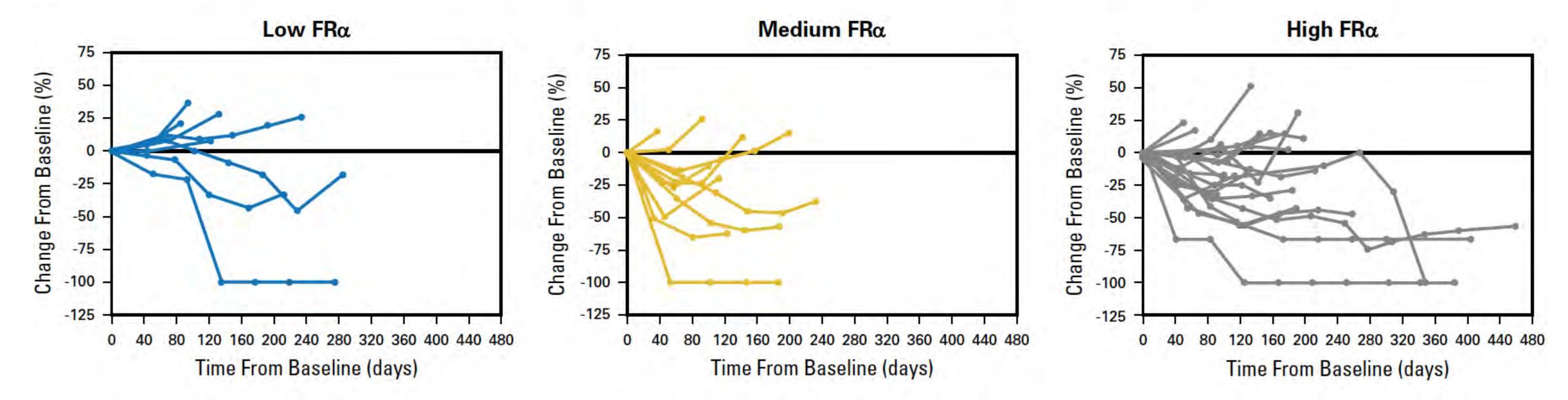

Size (%)

Patients at the 5.2 mg/kg starting dose and TPS > 25% demonstrated 53.8% ORR (n=13)

MORAb-202

- MORAb-202 is an antibody—drug conjugate consisting of farletuzumab joined to eribulin by a cathepsin-B cleavable linker
- Farletuzumab is thought to induce immune-dependent cell death, although the exact underlying mechanism is unknown
- Farletuzumab negative phase III*

First-in-Human Phase 1 Study of MORAb-202, an Antibody–Drug Conjugate Comprising Farletuzumab Linked to Eribulin Mesylate, in Patients with Folate Receptor-α–Positive Advanced Solid Tumors Toshio Shimizu, et al. Clin Cancer Res July 15 2021 (27) (14) 3905-3915 *Vergote let al. A randomized, double-blind, placebo-controlled, phase III study to assess efficacy and safety of weekly farletuzumab in combination with carboplatin and taxane in patients with ovarian cancer in first platinum-sensitive relapse. J Clin Oncol 2016;**34**:2271–8

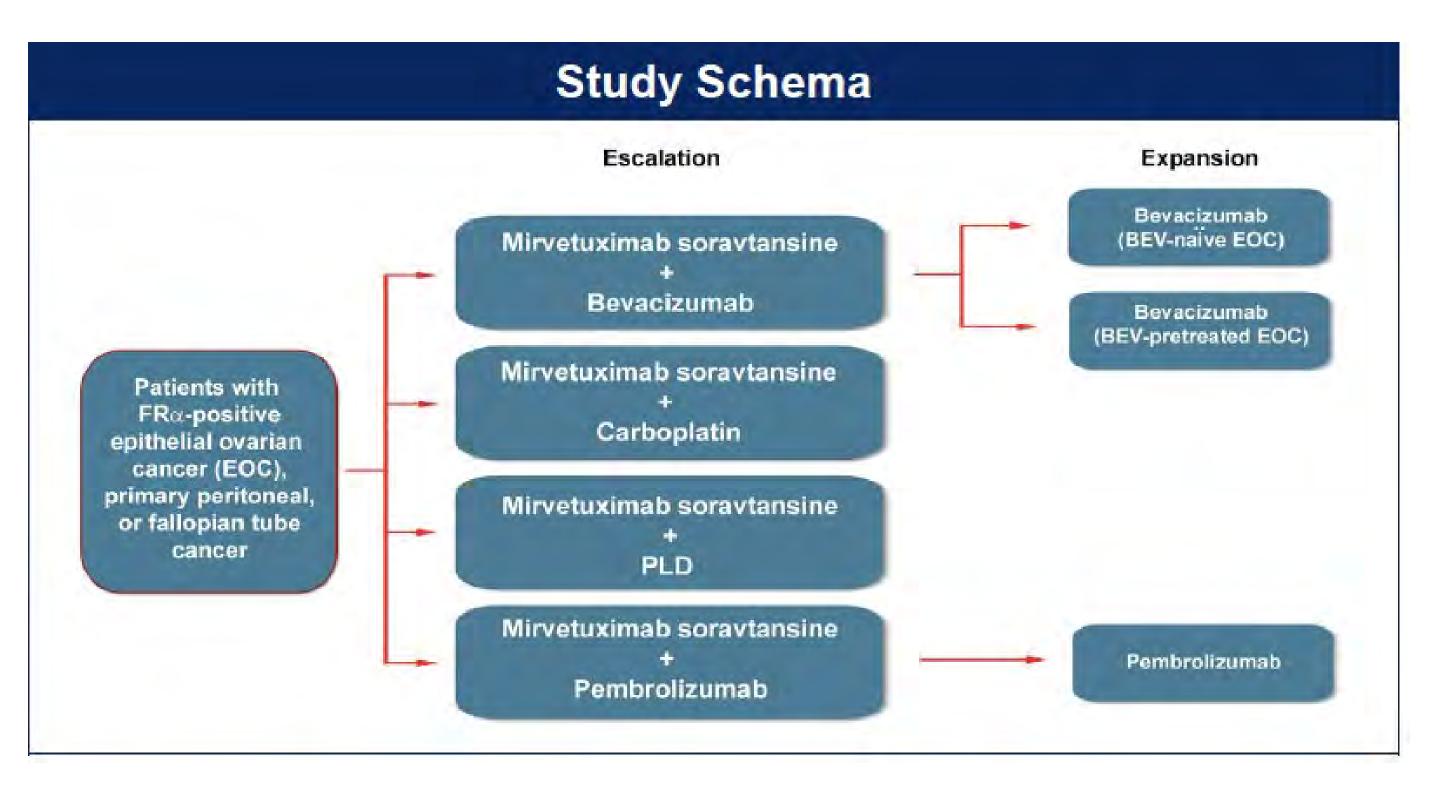


Mirvetuximab soravtansine (Mirv) – FIH/Expansion

Table 3. Summar	v of Efficacy	Measures	Grouped by	FRα	Expression
				, , , , , ,	

FRα Expression	No. of Patients	CR	PR	SD	PD	ND	ORR (%)	95% CI
Low	9	0	2	6	0	1	22.2	2.8 to 60.0
Medium	14	0	4	8	2	0	28.6	8.4 to 58.1
High	23	1	5	14	2	1	26.1	10.2 to 48.4
Total	46	1	11	28	4	2	26.1	14.3 to 41.1

Abbreviations: CR, complete response; FRα, folate receptor alpha; ND, not determined; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease.



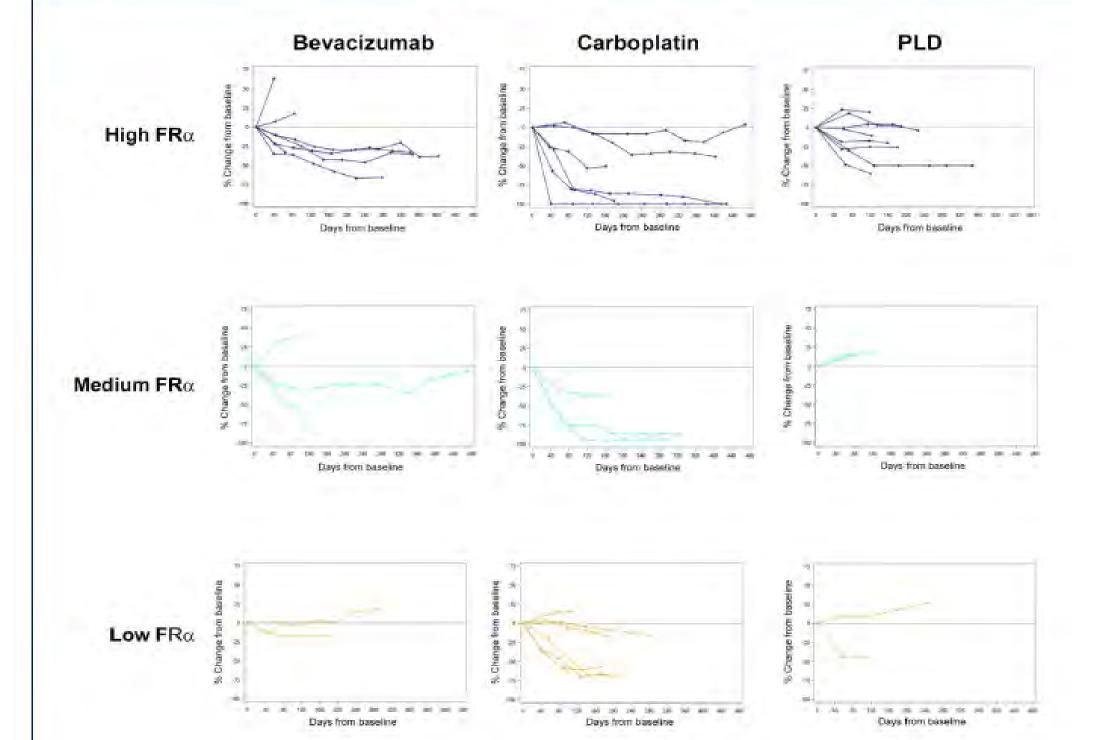
Moore KN, Martin LP, O'Malley DM, Matulonis UA, Konner JA, Perez RP, Bauer TM, Ruiz-Soto R, Birrer MJ. Safety and Activity of Mirvetuximab Soravtansine (IMGN853), a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, in Platinum-Resistant Ovarian, Fallopian Tube, or Primary Peritoneal Cancer: A Phase I Expansion Study. J Clin Oncol. 2017 Apr 1;35(10):1112-1118.

Moore K, Borghaei H, O'Malley D, Jeong W, Seward S, Bauer T, Perez R, Matulonis U, Running K, Zhang X, Ponte J, Ruiz-Soto R, Birrer M. Phase I dose-escalation study of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in patients with solid tumors. Cancer, 2017 Aug;123(16):3080-3087. PMID: 28440955

FORWARD-2

ASCO 2017

Safety findings from FORWARD II: a phase 1b study evaluating the folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC) mirvetuximab soravtansine (IMGN853) in combination with bevacizumab, carboplatin, pegylated liposomal doxorubicin (PLD), or pembrolizumab in patients with ovarian cancer

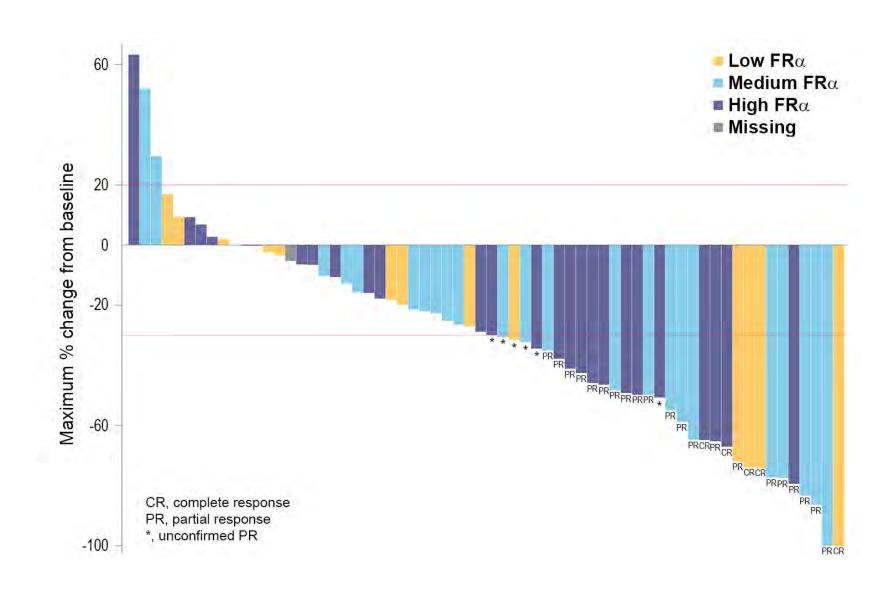

David M. O'Malley¹, Kathleen N. Moore², Ignace Vergote³, Lainie P. Martin⁴, Lucy Gilbert⁵, Antonio Gonzalez Martin⁶, Karim Malek⁷, Michael J. Birrer⁸, Ursula A. Matulonis⁹

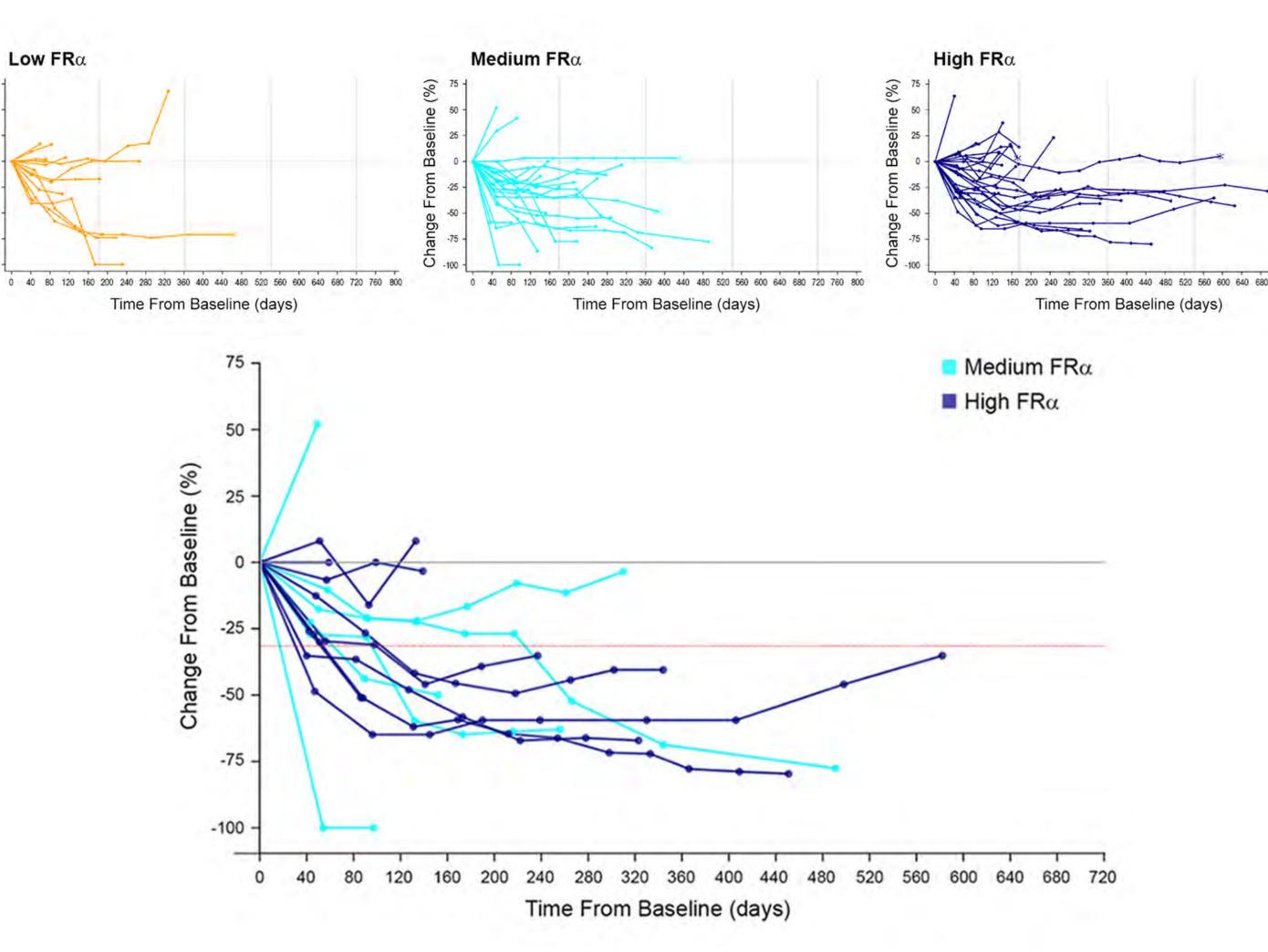
The Ohio State University- James CCC, Columbus, OH; ²University of Oklahoma Health Sciences Center, Oklahoma City, OK; ³Leuven Cancer Institute, Leuven, Belgium; ⁴Fox Chase Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Cancer Center, Philadelphia, PA; ⁵McGill University Health Center, Montreal, Canada; ⁶MD Andersor Canada; ⁶MD Ander

Confirmed ORR and Progression-Free Survival

Endpoint	Bevacizumab	Carboplatin	PLD
ORR (confirmed)	29%	65%	13%
95% CI	(8, 58)	(38, 86)	(2, 38)
PFS (months)	9.5	12.1	7.0
Median 95% CI	(3.5, 15.2)	(9.0, 15.0)	(1.7, -)

Percent Tumor Change in Target Lesions by FRα Expression

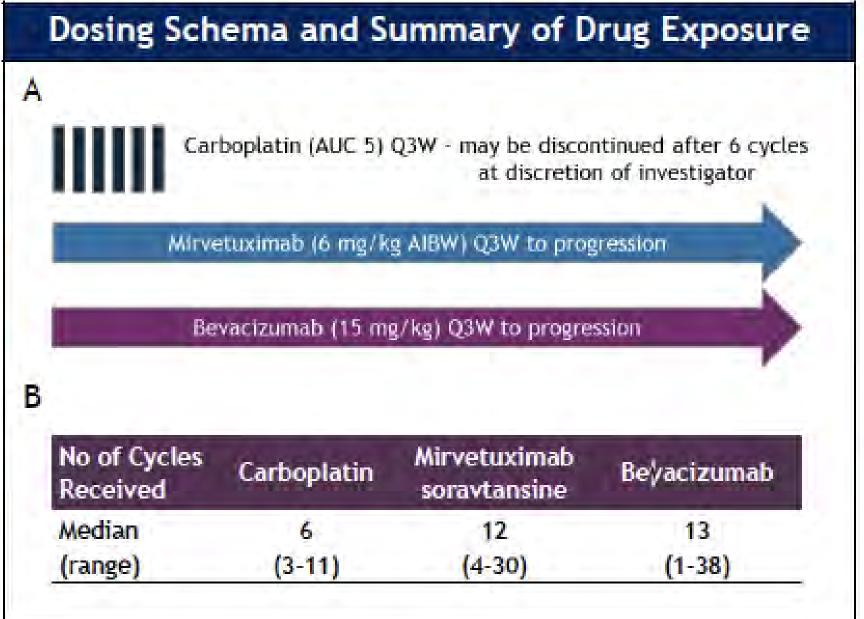



Mirv + Bev

ASCO 2019

	Total	FRα Expression*			AURELIA- type**	
Endpoint	(n = 66)	Low (n = 13)	Medium (n = 24)	High (n = 28)	(n = 16)	
ORR (confirmed) 95% CI	39% (28, 52)	31% (9, 61)	46% (26, 67)	39% (22, 59)	56% (30, 80)	•
PFS (months) Median 95% CI	6.9 (4.9, 8.6)	6.0 (2.1, 8.8)	6.9 (4.4, 9.9)	7.1 (4.4, 14.5)	9.9 (4.1, 15.9)	
DOR (months) Median 95% CI	8.6 (4.9, 14.9)	ND (3.7, -)	7.4 (2.6, -)	12.0 (4.9, -)	12 (6.0, 14.9)	_

Change From Baseline (%)



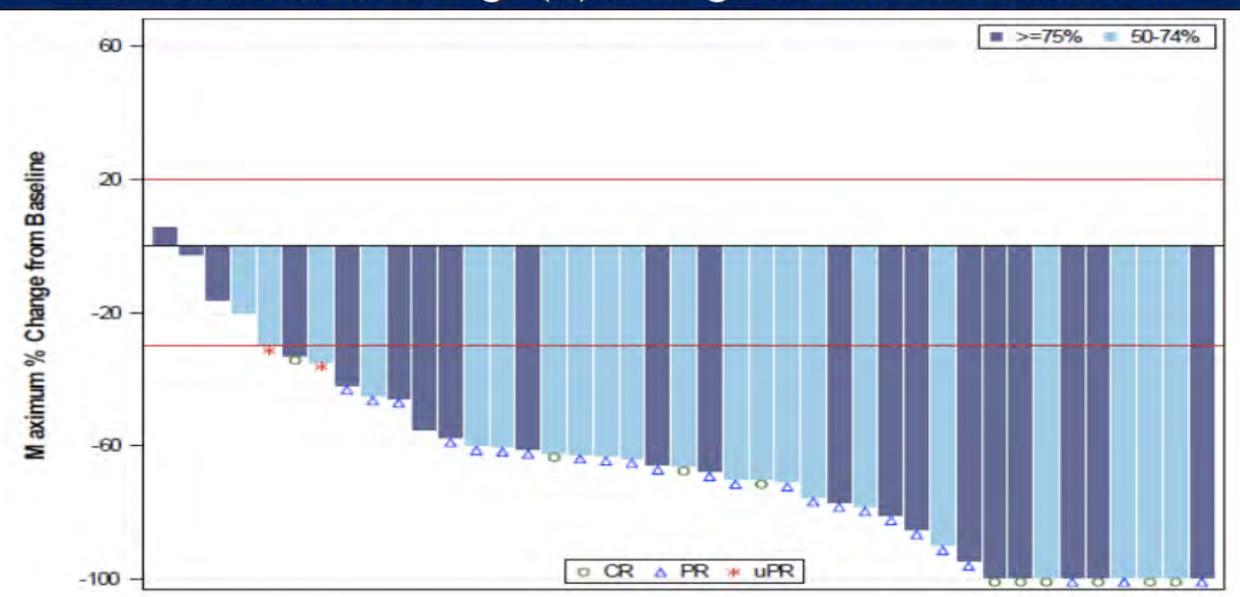
O'Malley DM, Matulonis UA, Birrer MJ, Castro CM, Gilbert L, Vergote I, Martin LP, Mantia-Smaldone GM, Gonzalez Martin A, Bratos R, Penson RT, Malek K, Moore KN. Phase IB Study of Mirvetuximab Soravtansine, a Folate Receptor Alpha-Targeting Antibody-Drug Conjugate, in Combination with Bevacizumab in Platinum-Resistant Ovarian Cancer. *Gyn Onc*, 2020 May;157(2):379-385. PMID 32081463

Mirv + Carbo + Bev

ESMO 2020

Characteristic	All Patients
No. of prior systemic	(n = 41)
therapies, n (%)	
1	31 (76)
2	10 (24)
Platinum-free treatment	
interval, <i>n</i> (%)	
≤ 12 months	24 (59)
> 12 months	17 (41)
FRα expression* n (%)	
High	20 (49)
Medium	21 (51)

Mirvetuximab soravtansine, a folate receptor alpha ($FR\alpha$)-targeting antibody-drug conjugate (ADC), in combination with carboplatin and bevacizumab: final results from a Phase 1b study in patients (pts) with ovarian cancer

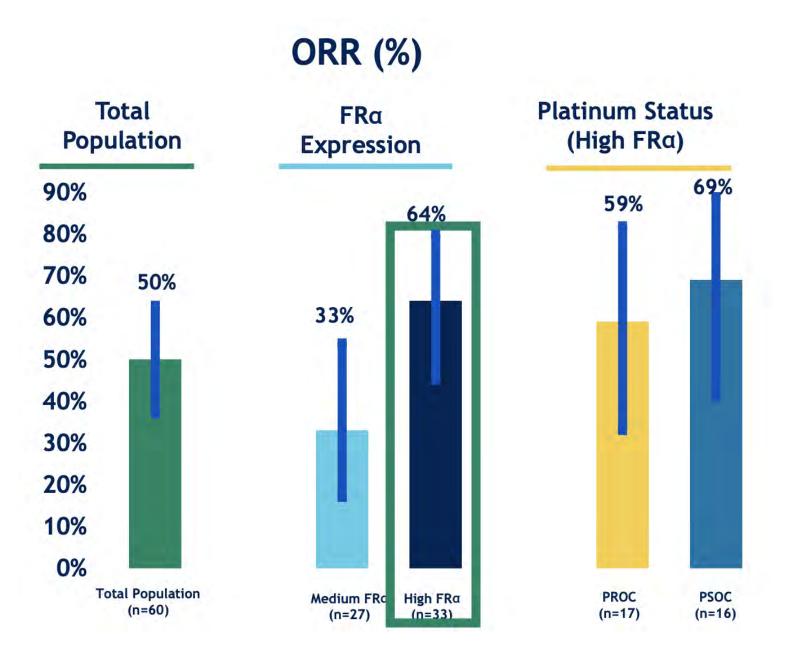

David M. O'Malley¹, Debra L. Richardson², Ignace Vergote³, Lucy Gilbert⁴, Lainie P. Martin⁵, Gina M. Mantia-Smaldone⁶, Cesar M. Castro⁷, Diane Provencher⁸, Ursula A. Matulonis⁹, Patrick Zweidler-McKay¹⁰, Kathleen N. Moore²

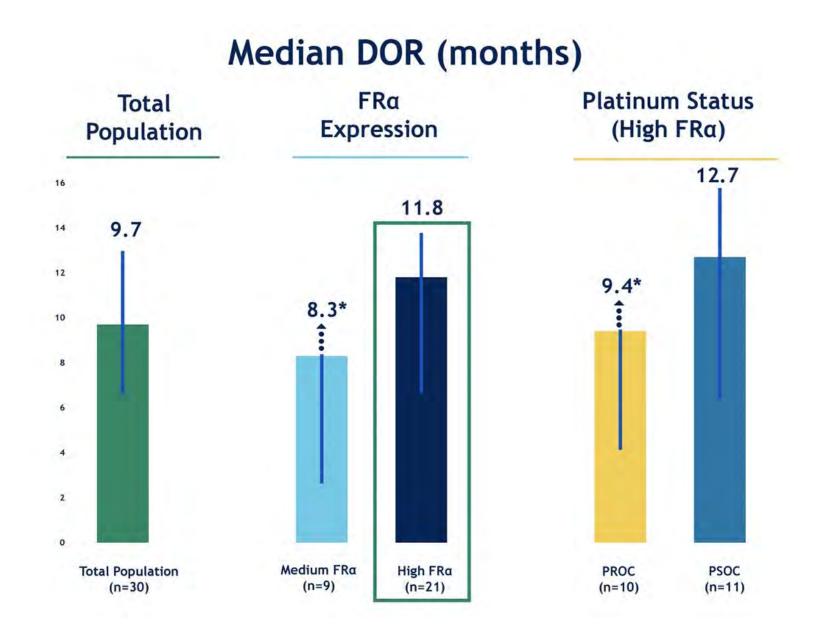
Confirmed ORR and Time-to-Event Endpoints

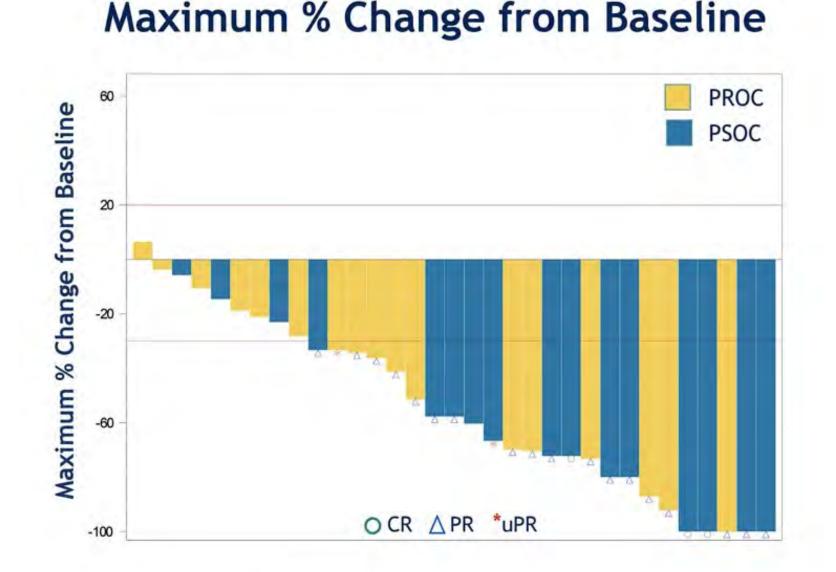
	Total	FRa Expression		
Endpoint	(n=41)	Medium (n=21)	High (n=20)	
ORR (confirmed; 95% CI)	83% (68, 93)	86% (64, 97)	80% (56, 94)	
DOR mo. (median; 95% CI)	10.9 (7.7, 13.6)	13.3 (6.7, 15.2)	9.9 (7.5, 12.3)	
PFS mo. (median; 95% CI)	12.8 (9.1, 14.6)	12.9 (8.1, 16.2)	12.4 (9.0, 14.6)	

DOR, duration of response; ND, not determined

Maximum Tumor Change (%) in Target Lesions from Baseline


CRs with <100% decrease: Lymph node target lesions that met CR definition per RECIST 1.1 (i.e. all pathological lymph nodes have reduction in short axis to <10 mm)


†Despite target lesion PR, overall response of patient at cycle 4 was PD due to appearance of new lesions


 Confirmed tumor responses were observed in 34 patients, consisting of 10 complete responses (CR) and 24 partial responses (PR); two additional patients had unconfirmed PRs as best response

Pts (n=30) with 1 prior had an ORR of 90%, DOR of 9.7 mo. (7.6, 12.3) and PFS of 11.9 (9.0, 14.8)

Mirv + Bev — Platinum Agnostic ASCO 2021

- 50% ORR (30/60) for overall cohort
- 64% ORR (21/33) in high FRα tumors
 - >> 59% ORR (10/17) in PROC subset
 - ➤ 69% ORR (11/16) in PSOC subset

- 9.7 mo mDOR for overall cohort
- 11.8 mo mDOR in high FRα tumors
 - > 9.4 mo mDOR in PROC subset
 - > 12.7 mo mDOR in PSOC subset

 97% (32/33) of patients demonstrated tumor burden reduction

STUDY DESIGN

> FORWARD I

- Platinum-resistant ovarian cancer
- FRa-positive tumor expression
 - Medium (50-74% cells positive)
 - High (≥75% cells positive)
- ECOG performance status 0 or 1
- 1-3 prior therapies

Statistical Assumptions

- Hochberg procedure
- α =0.05 (two-sided), power = 90% HR=0.58; control arm mPFS 3.5 mos

Mirvetuximab Soravtansine (n=248)

6 mg/kg (adjusted ideal body weight) once every 3 weeks

2:1 Randomization

Stratification Factors:

FRa expression (medium or high) Prior therapies (1 and 2, or 3) Choice of chemotherapy

Investigator's Choice Chemotherapy

Paclitaxel, PLD†, or Topotecan (n=118)

Paclitaxel: 80 mg/m² weekly PLD: 40 mg/m² once every 4 weeks Topotecan: 4 mg/m² on Days 1, 8, and 15 every 4 weeks; or 1.25 mg/m² on Days 1-5 every 3 weeks

Primary Endpoint

Progression-free survival (PFS; by BIRC*) for ITT and high FRa populations

*BIRC = Blinded Independent Review Committee; analyzed by Hochberg procedure

Secondary Endpoints

Overall response rate (ORR) Overall survival (OS) Patient reported outcomes (PRO)

†Pegylated liposomal doxorubicin ClinicalTrials.gov Identifier: NCT02631876

Efficacy Results at a Glance

Intent to treat (ITT) population

Endpoint	Treatment effect size	p-value
PFS by BIRC*	HR: 0.981 mPFS: 4.1 vs 4.4	0.897
ORR by BIRC	22% vs 12%	0.015
DOR (mos)	HR = 0.982 5.7 vs 7.3	0.974
OS	HR: 0.815 mOS: 16.4 vs 14.0	0.248
PFS by INV	HR: 0.809 mPFS: 4.3 vs 4.2	0.116
ORR by INV	29% vs 16%	0.008
CA125 ORR	51% vs 27%	0.0002

FRa	high	subgroup	
		202	7

Endpoint	Treatment effect size	p-value**
PFS by BIRC	HR: 0.693 mPFS: 4.8 vs 3.3	0.049
ORR by BIRC	24% vs 10%	0.014
DOR (mos)	HR= 0.598 5.7 vs 4.2	0.374
OS	HR: 0.618 mOS: NR* vs 11.8	0.033
PFS by INV	HR: 0.667 mPFS: 5.0 vs 4.2	0.018
ORR by INV	29% vs 13%	0.007

^{**}Nominal P value

Efficacy Results ORR and DOR

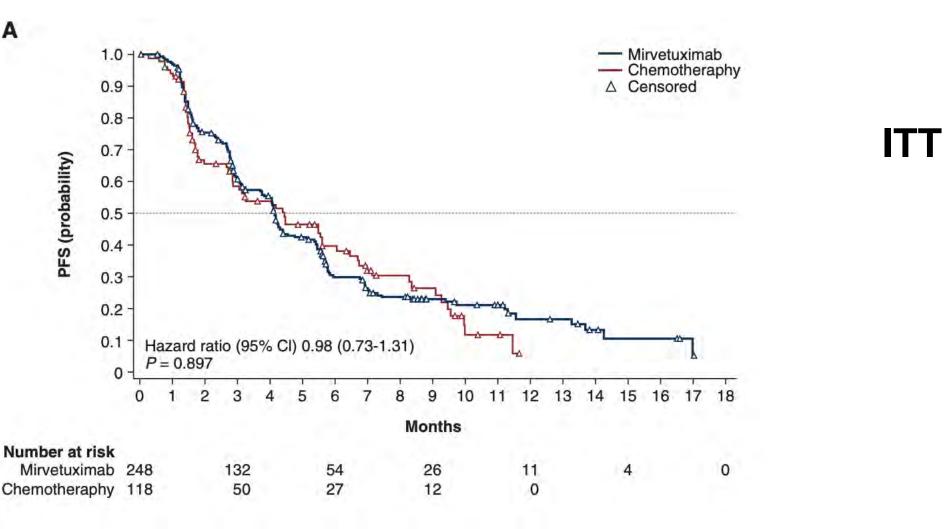
Intent to treat (ITT) population

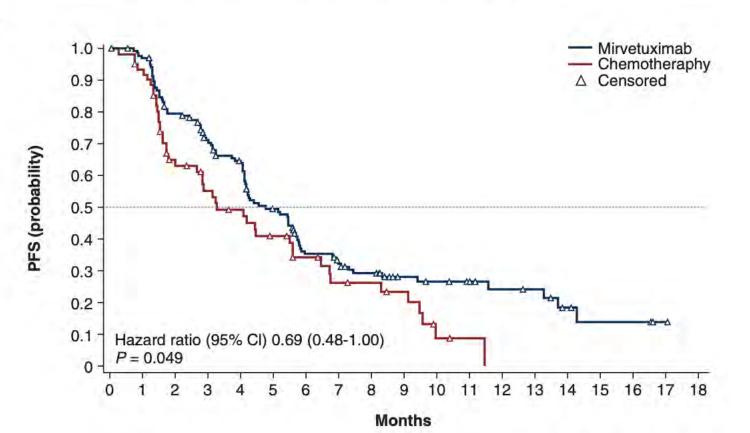
Endpoint	Treatment effect size	p-value**
ORR by BIRC*	22% vs 12%	0.015
DOR (mos)	HR = 0.982 5.7 vs 7.3	0.974
ORR by INV	29% vs 16%	0.008

FRa high subgroup

Endpoint	Treatment effect size	p-value**
ORR by BIRC*	24% vs 10%	0.014
DOR (mos)	HR= 0.598 5.7 vs 4.2	0.374
ORR by INV	29% vs 13%	0.007

Moore, K, ESMO 2019

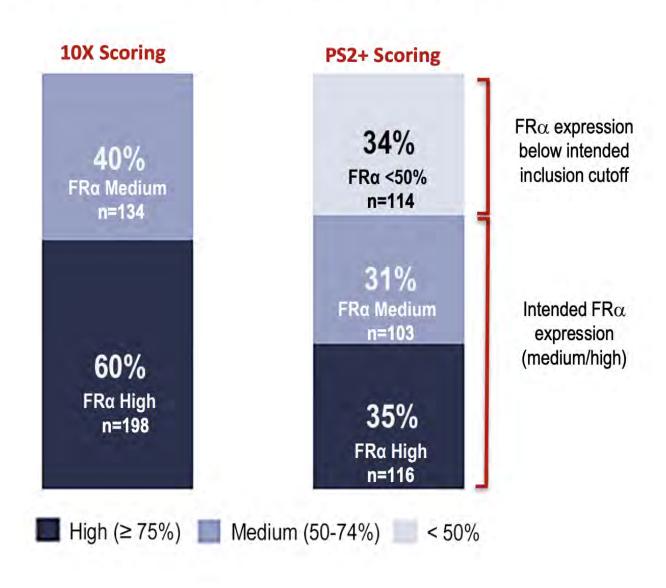

*BIRC = Blinded Independent Review Committee


**NS per Hochberg procedure

Moore KM et al; Annals of Oncology; 32 (6) 2021

• FORWARD-1

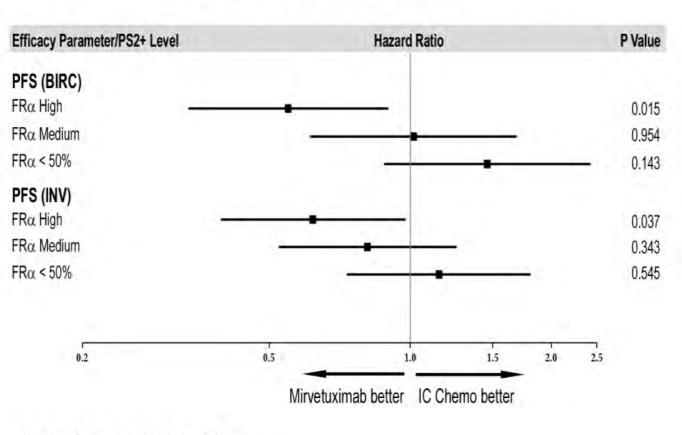
- Negative for primary objectives
 - ITT
 - HIGH FORa
- FORa predictive marker for Mirv
- FORa prognostic markers

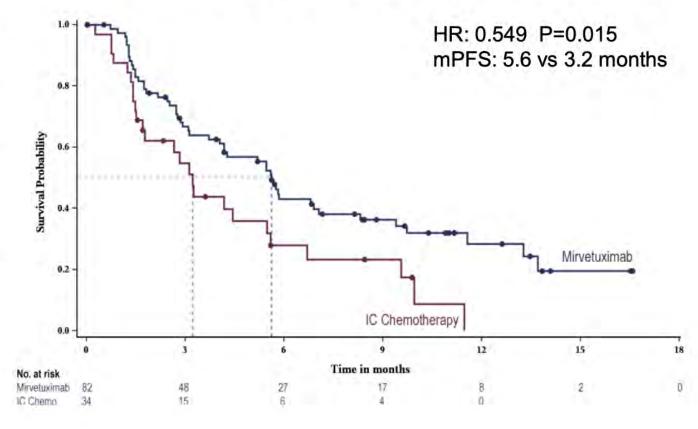

HIGH FORa

^{*}BIRC = Blinded Independent Review Committee NS based on Hochberg Procedure

FORWARD I 10X SCORING COMPARED WITH EXPLORATORY PS2+ SCORING

Rescoring of the FORWARD I samples using PS2+ indicates:


- 34% of patients enrolled in FORWARD I had low FR α levels that should have precluded enrollment; and
- the protocol-defined FRα high subset contained patients with a mixture of FRα expression levels


FORWARD-1

PS2+ RE-SCORING: PFS TRENDS ACROSS SUBGROUPS

PFS Hazard Ratio Plot

PFS (by BIRC) - FRα High (n=116)

PS2+ RE-SCORING: TRENDS ACROSS SUBGROUPS

Endpoint	FRα < 50% (n=114) (Mirv vs IC Chemo)	FRa Medium (n=103) (Mirv vs IC Chemo)	FRα High (n=116) (Mirv vs IC Chemo)	
PFS by BIRC (mo.)	HR: 1.458 (0.878, 2.420) mPFS: 3.8 vs 5.5	HR: 1.015 (0.611, 1.687) mPFS: 4.3 vs 5.6	HR: 0.549 (0.336, 0.897) mPFS: 5.6 vs 3.2	
ORR by BIRC	16% vs 16%	28% vs 18%	29% vs 6%	
95% Cls	(8%, 26%) vs (6%, 31%)	(18%, 40%) vs (7%, 35%)	(20%, 40%) vs (1%, 20%)	
OS (August 2019)	HR: 0.923 (0.548, 1.554)	HR: 0.936 (0.542, 1.616)	HR: 0.678 (0.410, 1.119)	
(mo.)	mOS: 14.0 vs 13.4	mOS: 15.9 vs 20.7	mOS: 16.4 vs 11.4	
PFS by INV (mo.)	HR: 1.149 (0.732, 1.803) mPFS: 4.0 vs 4.5	HR: 0.810 (0.523, 1.254) mPFS: 5.1 vs 2.8	HR: 0.619 (0.394, 0.975) mPFS: 5.6 vs 3.7	
ORR by INV	18% vs 21%	36% vs 24%	38% vs 9%	
95% Cls	(11%, 29%) vs (10%, 37%)	(25%, 49%) vs (11%, 41%)	(27%, 49%) vs (2%, 24%)	

P values from unstratified log-rank test

Moore, K, ESMO 2019

SORAYA

SINGLE-ARM PIVOTAL TRIAL OF MIRVETUXIMAB IN FRα-HIGH PATIENTS WITH PLATINUM-RESISTANT OVARIAN CANCER

INCLUSION CRITERIA

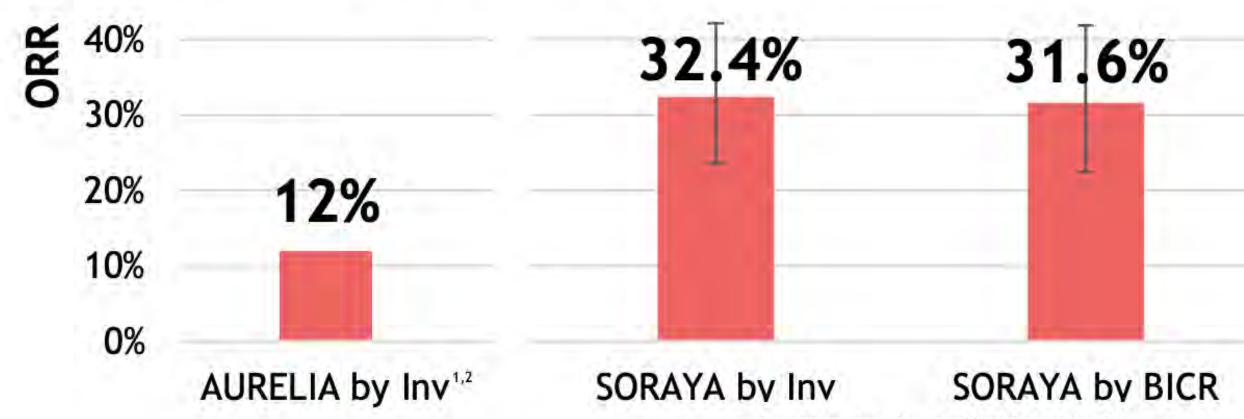
- Platinum-resistant disease (PFI < 6 months)
- · FRa-high only
- · Prior bevacizumab required
- · Prior PARPi allowed
- 1 to 3 prior lines allowed
- Patients with BRCA mutations allowed

PRIOR TREATMENT

bevacizumab

51%

3 prior lines Received of therapy prior


100% 48%

Received prior PARPi

SAFETY AND TOLERABILITY

- Favorable tolerability data with >700 patients treated to date
- In SORAYA, the most common AEs were low-grade gastrointestinal and ocular events, including blurred vision, keratopathy, and nausea; 7% of patients discontinued due to treatment-related AEs, including one patient due to ocular AE

MET PRIMARY ENDPOINT

Responses were irrespective of number of prior lines or prior PARPi use

** KEY SECONDARY ENDPOINT

5.9 months mDOR

By Investigator at Data Cutoff (95% CI: 5.6, 7.7)

Nearly half of responders still receiving mirvetuximab at data cutoff; with longer follow-up, mDOR could range from 5.7 to above 7 months

GOG 3045

PHASE 3 RANDOMIZED TRIAL FOR MIRVETUXIMAB IN FRα-HIGH PATIENTS WITH PLATINUM-RESISTANT OVARIAN CANCER

TARGET TIMELINES

TOP-LINE DATA Q3 2022

EXPECTED APPROVAL 2023

Mirvetuximab

STRATIFICATION FACTORS IC Chemotherapy (Paclitaxel, PLD, Topotecan)
Prior Therapies (1 vs 2 vs 3)

Investigator's Choice Chemotherapy Paclitaxel, PLD, or Topotecan

PRIMARY ENDPOINT

PFS by Investigator BICR for Sensitivity Analysis

SECONDARY ENDPOINTS

ORR by Investigator, OS, and PRO

ENROLLMENT AND KEY ELIGIBILITY

430 patients/330 events for PFS by Investigator Platinum-resistant disease (primary PFI >3 months) 1 to 3 prior lines of therapy Prior bevacizumab* and prior PARPi allowed Patients with BRCA mutations allowed

GL RIOSA

RANDOMIZED PHASE 3 TRIAL FOR MIRVETUXIMAB + BEVACIZUMAB MAINTENANCE IN FRα-HIGH PLATINUM-SENSITIVE OVARIAN CANCER

INITIATING IN Q2 2022

420 STUDY

SINGLE-ARM PHASE 2 TRIAL OF MIRVETUXIMAB + CARBOPLATIN FOLLOWED BY MIRVETUXIMAB CONTINUATION IN FRa-LOW, MEDIUM, AND HIGH PATIENTS WITH PLATINUM-SENSITIVE OVARIAN CANCER

INITIATING IN Q2 2022

PRIMARY ENDPOINT PFS

SECONDARY ENDPOINTS OS, DOR

ENROLLMENT AND KEY ELIGIBILITY

438 patients

Platinum-sensitive ovarian cancer 1 prior platinum treatment Prior PARPi required if BRCA+ CR, PR, or SD after treatment with platinum-based doublet + bevacizumab required

PICC LO

SINGLE-ARM TRIAL FOR MIRVETUXIMAB IN FRα-HIGH PATIENTS WITH PLATINUM-SENSITIVE **OVARIAN CANCER**

NOW ENROLLING

PRIMARY ENDPOINT

ORR by Investigator

SECONDARY ENDPOINT

DOR by Investigator

ENROLLMENT AND KEY ELIGIBILITY

~75 patients

Platinum-sensitive ovarian cancer 2 or more prior systemic treatments At least 2 prior platinum-containing regimens Prior PARPi required if BRCA+ Appropriate for single-agent therapy

PRIMARY ENDPOINT

ORR by Investigator

SECONDARY ENDPOINTS

DOR, PFS

ENROLLMENT AND KEY ELIGIBILITY

~110 patients

Platinum-sensitive ovarian cancer 1 prior platinum treatment Prior PARPi required if BRCA+

https://www.immunogen.com/what-we-do/our-pipeline/

Conclusions

- ADCs are going to likely impact our treatment paradigm in ovarian cancer
 - Likely approval in PROC
 - Earlier Lines of Therapy?
- Diagnostic Testing
 - NaPi2b
 - FORa
 - Others
- Impact of approval on other agents and development?

Questions?

