Endometrial Cancer – Highlight Reel

Brian M. Slomovitz, MD, MS, FACOG

Professor, Florida International University Director, Gynecologic Oncology, Mount Sinai Medical Center Member, Board of Directors, GOG Foundation Uterine Cancer Lead, GOG Partners

November 11, 2022

Objectives

- Review key studies from fall meetings
- Discuss ongoing endometrial cancer trials in GOG Partners

Predict changes in standard of care after first-line studies report

Review of Key Studies

Study 309/K775: Updated efficacy and safety

- \bullet primary analysis (Makker 2022, NEJM).
- \bullet from the interim analysis for OS).

PFS, OS, and ORR were statistically significant with lenvatinib plus pembrolizumab vs chemotherapy at the

Median follow-up time: 14.7 months (data cutoff date: 1 March 2022; >16 months of additional follow-up time)

PFS and ORR (by BICR per RECIST v1.1) are also presented at this data cutoff; all analyses are descriptive.

Continued OS benefit of lenvatinib plus pembrolizumab vs chemotherapy with follow-up extended by over 16 months

pMMR Population

- ulletthe all-comer population).
 - (95% CI, 0.51, 0.71).

All-Comer Population

OS favored lenvatinib plus pembrolizumab despite some pts in the chemotherapy arm receiving subsequent lenvatinib plus pembrolizumab. (In the chemotherapy arm, 10.0% of pts in the pMMR population and 8.7% of pts in

After excluding these pts, the pMMR OS HR was 0.64 (95% CI, 0.54, 0.76); the all-comer OS HR was 0.60

Continued PFS^a benefit of lenvatinib plus pembrolizumab vs chemotherapy with follow-up extended by over 16 months

pMMR Population

Continued tumor responses in pMMR and all-comer pts by BICR per RECIST v1.1 pMMR ORR pMMR DOR

All-comer ORR

All-comer DOR

Conclusions

- NEJM).
- effect observed at the interim analysis (Makker 2022, NEJM).
- pembrolizumab.
- (Makker 2022, NEJM) and with the established safety profile of each agent.
- previously treated aEC.

At the interim analysis, lenvatinib plus pembrolizumab led to statistically significantly improved PFS (pMMR HR: 0.60; all-comer HR: 0.56), OS (pMMR HR: 0.68; all-comer HR: 0.62), and ORR (pMMR ORR: 30.3% vs 15.1%; all-comer ORR: 31.9% vs 14.7%) compared to chemotherapy (Makker 2022,

At the final prespecified analysis of OS, lenvatinib plus pembrolizumab continued to demonstrate clinically meaningful improvement in OS, PFS, and ORR vs chemotherapy in pts with aEC (pMMR and all-comer populations) who received prior platinum therapy, supporting the robustness of the treatment

OS KM curves for lenvatinib plus pembrolizumab and chemotherapy arms separated early and remained separated, despite some pts in the chemotherapy arm receiving subsequent lenvatinib plus

No new safety signals were observed, and safety results were consistent with the interim analysis

Results continue to support the use of lenvatinib plus pembrolizumab as a standard therapy in pts with

GARNET: Safety and antitumor activity of dostarlimab in dMMR or pMMR endometrial cancer

- GARNET (NCT02715284) is a phase 1, single-arm study of dostarlimab (TSR-042) monotherapy in multiple tumor types
- In part 2B, dostarlimab was dosed at the RTD determined from Part 1 and 2A
 - 500 mg IV Q3W for 4 cycles, then 1000 mg IV Q6W until disease progression
- MMR status was determined by local immunohistochemistry
- Primary endpoint: ORR and DOR

Part 1 **Dose finding**

Part 2A Fixed-dose safety run-in

> Part 2B **Expansion cohorts**

> > A1*: dMMR EC N=129

> > A2[†]: pMMR EC N=161

> > > E: NSCLC

F: Non-endometrial dMMR/MSI-H basket

G: PROC

Key inclusion/exclusion criteria for cohorts A1 and A2:

- Patients must have progressed on or after platinum doublet therapy
- Patients must have received ≤ 2 prior lines of treatment for recurrent or advanced disease
- Patients must have measurable disease at baseline
- Patients must be anti–PD-(L)1 naïve
- Patients could be screened based on local MMR/MSI testing results using IHC, PCR, or NGS performed in a certified local laboratory, but patient eligibility needs to be confirmed by MMR IHC results

Enrolled and dosed (safety population)	dMMR EC N=126
No measurable disease at baseline or insufficient follow-up	
Measurable disease at baseline and ≥6 months follow-up (efficacy population)	n=103
Discontinued treatment	
Remain on treatment	n=56 of 126 (

Data cut-off date March 1, 2020. dMMR, mismatch mutation repair deficient; EC, endometrial cancer; MMRp, mismatch mutation repair proficient.

Enrollment and Outcomes

Primary Endpoint Analysis

• ORR was 44.7% in patients with dMMR EC, and 13.4% in patients with MMRp EC

Variable

Median follow-up time, mo

```
Objective response rate*, n (%, 95% CI)
```

Complete response, n (%)

Partial response, n (%)

Stable disease, n (%)

Progressive disease, n (%)

Not evaluable, n (%)

Not done, n (%)

Disease control rate[†], n (%, 95% CI)

Response ongoing, n (%)

Median duration of response, (range) mo

Kaplan–Meier estimated probability of remaining in response

at 6 mo, % at 12 mo, % at 18 mo, %

dMMR EC, n=103	MMRp EC, n=142
16.3	11.5
46 (44.7%, 34.9–54.8) 11 (10.7) 35 (34.0) 13 (12.6) 39 (37.9) 3 (2.9) 0 (4.0)	19 (13.4%, 8.3–20.1) 3 (2.1) 16 (11.3) 31 (21.8) 77 (54.2) 0
59 (57.3%, 47.2–67.0)	50 (35.2%, 27.4–43.7)
41 (89.1)	12 (63.2)
Not reached (2.63–28.09+)	Not reached (1.54+-30.36+)
97.8 90.6 79.2	83.0 61.3 61.3

Duration of Response

Data cut-off date March 1, 2020. CR, complete response; dMMR, mismatch mutation repair deficient; EC, endometrial cancer; MMRp, mismatch mutation repair proficient; PD, progressive disease; PR, partial response; SD, stable disease.

Conclusions

Dostarlimab demonstrated durable antitumor activity in both dMMR and MMRp advanced/recurrent EC

- dMMR status by IHC was associated with a higher response rate
- historically associated with a worse prognosis
- due to a TRAE
 - Most adverse events were grade 1 or 2 0
 - Safety was consistent between dMMR and MMRp cohorts Ο

CR, complete response; dMMR, mismatch mutation repair deficient; EC, endometrial cancer; IHC, immunohistochemistry MMRp, mismatch mutation repair proficient; PD-(L)1, programmed cell death (ligand) 1; PR, partial response; SD, stable disease.

Dostarlimab demonstrated a notable disease control rate (35.2%; 2.1% CR, 11.3% PR, 21.8% SD) in patients with MMRp EC, was comprised of a higher percentage of patients with Type II EC which is

No new safety signals were detected, and only 5.5% of patients discontinued dostarlimab

Post Hoc Analysis of Objective Response Rate by Mismatch **Repair Protein Dimer Loss/Mutation Status in Patients with Mismatch Repair Deficient Endometrial Cancer Treated with** Dostarlimab

- MMR deficiency is caused by loss of expression of the MMR proteins MLH1, PMS2, MSH2, and/or MSH6¹
 - These proteins function as heterodimers (MLH1–PMS2 and MSH2–MSH6) to mediate DNA repair —
- Loss of expression is caused primarily by 2 mechanisms Germline (Lynch syndrome) or somatic mutation of MLH1, PMS2, MSH2, and/or MSH6 Epigenetic methylation of the MLH1 promoter
- Gene mutation or epigenetic silencing of 1 gene typically leads to loss of expression of the heterodimer (most common dMMR staining pattern) and results in defective MMR and genomic instability¹
 - Other patterns of loss are possible (loss of only 1 protein; loss of 3 proteins; or loss of atypical combinations of 2 proteins, eg, PMS2 and MSH6, etc)

Background

- MLH1 promoter methylation accounts for approximately 75%–80% of cases with MMR deficiency in EC¹⁻⁴
 - Somatic or germline mutation in an MMR gene is estimated to account for 10-20% of MMR deficiency in EC¹⁻⁴
- The relationship between mechanism of MMR deficiency and outcomes is not well understood

dMMR, MMR deficient; EC, endometrial cancer; MMR, mismatch repair.

1. Pasanen, A, et al. Mod Pathol 33, 1443–1452 (2020). 2. Kurpiel, B, et al. Int J of Gyn Path 41:1:1-11 (2022). 3. Buchanan, D, et al. JCO 2014 32:2, 90-100, 4. Kahn, RM et al. Cancer, 125: 3172-3183.

MMR deficiency

Germline or somatic mutation

Epigenetic MLH1 promoter methylation

Loss of expression of ≥1 MMR proteins

No transcription or protein production of methylated genes

Loss of heterodimer (major) Loss of expression in atypical patterns (minor)

Loss of MLH1 also results in loss of PMS2

> **Defective MMR and** genomic instability

Normal No mutation or

methylation

Normal transcription and protein production

No difference in ORR or DOR by pattern of **MMR protein loss**

MMR protein loss is similar to the estimated ratios in the dMMR EC population¹⁻⁴

MMR protein staining pattern (IHC)	Patients, N	Responders, n	ORR, % (95% exact CI)	DOR median (95% Cl), mo
Cohort A1 (dMMR/MSI-H EC)	143	65	45.5 (37.1–54.0)	NR (38.9–NR)
MLH1–PMS2 dimer loss	94 (66%)	46	48.9 (38.5–59.5)	NR (34.7–NR)
MSH2–MSH6 dimer loss	16 (11%)	9	56.3 (29.9–80.2)	NR (13.9–NR)
Other ^a	33 (23%)	10	30.3 (15.6–48.7)	NR (13.7–NR)

1. Pasanen, A, et al. Mod Pathol 33, 1443–1452 (2020). 2. Kurpiel, B, et al. Int J of Gyn Path 41:1:1-11 (2022). 3. Buchanan, D, et al. JCO 2014 32:2, 90-100, 4. Kann, RM et al. Cancer, 125: 3172-3183.

^aOther: any other pattern of loss that is not exclusively MLH1–PMS2 or MSH2–MSH6 dimer loss. This group includes 17 patients with loss of expression of 1 MMR protein, 13 with loss of 3 proteins, 1 with loss of 2 proteins that are not a canonical dimer, and 2 with MMR unknown/MSI-H status. dMMR, MMR deficient; DOR, duration of response; EC, endometrial cancer; IHC, immunohistochemistry; MMR, mismatch repair; MSI-H, microsatellite instability-high; ORR, objective response rate.

No difference in ORR or DOR in those with MLH1 loss by mutation status

in the dMMR population¹⁻⁴

	Patients, N	Responders, n	ORR, % (95% exact Cl)	DOR median (95% CI), mo
Cohort A1 (dMMR/MSI-H EC)	143	65	45.5 (37.1–54.0)	NR (38.9–NR)
Cohort A1 patients with available mutation data	101			
MLH1 loss by IHC (any pattern) ^a	78	31	39.7 (28.8–51.5)	NR (38.9–NR)
MLH1 loss by IHC (any pattern) and mutation in <i>MLH1</i> or <i>PMS2</i> genes	7 (9%)	3	42.9 (9.9–81.6)	NR (NR–NR)
MLH1 loss by IHC (any pattern) and no mutation in <i>MLH1</i> or <i>PMS2</i> genes	71 (91%)	28	39.4 (28.0–51.7)	NR (38.9–NR)

1. Pasanen, A, et al. Mod Pathol 33, 1443–1452 (2020). 2. Kurpiel, B, et al. Int J of Gyn Path 41:1:1-11 (2022). 3. Buchanan, D, et al. JCO 2014 32:2, 90-100, 4. Kahn, RM et al. Cancer, 125: 3172-3183.

^aThis group includes 66 patients with loss of the MLH1–PMS2 dimer and 12 with another pattern. dMMR, MMR deficient; DOR, duration of response; EC, endometrial cancer; IHC, immunohistochemistry; MMR, mismatch repair; MSI-H, microsatellite instability-high; ORR, objective response rate.

Most MLH1 loss was not accompanied by mutations, consistent with the estimated rate

Conclusions

- Tumors with loss of MLH1 and no mutation identified in MLH1 or PMS2 are likely to have MLH1 identify these patients
 - gene methylation/mutation status
- These data are hypothesis generating
 - response to dostarlimab
- (ORR of 39.4% in patients with presumed MLH1 promoter methylation)

dMMR, MMR deficient; EC, endometrial cancer; MMR, mismatch repair; ORR, objective response rate.

• Consistent with the literature, the most common pattern of MMR protein loss was the MLH1–PMS2 heterodimer (66% of patients in the GARNET cohort A1 vs \approx 75% in the general EC population)¹⁻⁴

promoter methylation; however, direct testing of methylation would be the most accurate means to

There were no noticeable differences observed in ORR by pattern of MMR protein loss or MMR

o This data set is the largest to explore the response rate by mechanism leading to MMR deficiency

GARNET was not powered to study the effect of MMR protein pattern or mutation status on

The data suggest the route to MMR deficiency does not influence response to dostarlimab

ANNUAL GLOBAL MEETING

^{1.} Pasanen, A, et al. Mod Pathol 33: 1443–1452 (2020). 2. Kurpiel, B, et al. Int J of Gyn Path 41(1): 1-11 (2022). 3. Buchanan, D, et al. JCO 2014 32(2), 90-100, 4. Kahn, RM et al. *Cancer*, **125**: 3172-3183.

Atezolizumab and Bevacizumab in Recurrent Endometrial Cancer: A Phase II, Multi-institutional Trial

Inclusion criteria:

- Advanced, recurrent endometrial cancer
- Endometrioid, serous, mixed adenocarcinoma, clear-cell, or carcinosarcoma
- 1-2 prior lines for endometrial cancer
- Measurable disease at time of recurrence
- Prior carboplatin/paclitaxel acceptable
- Archival tissue or tissue biopsy

Pre-treatment blood collection

U Health Stephenson Cancer Center

O'NEAL COMPREHENSIVE CANCER CENTER AT UAB

Washington University in St. Louis

SITEMAN

Ø

CANCER CENTER

NCT03526432

Results: Overall Adverse events and Clinical Activity

Total Number of Subjects

Adverse events

Grade 3 due to atezolizumab

Grade 3 due to bevacizumab

Grade 4

Dose interruption

Dose reduction

Discontinued due to toxicity

Clinical Activity

ORR for all

ORR for MMRp

Median DOR (months)

Median PFS (months)

n=57	
n (%)	
4 (7%)	
12 (22%)	
0	
45 (79%)	٦
2 (4%)	
9 (16%)	
30% (95% CI 18-43)	
33% (95% CI 20-48)	
15 (95% CI 2.9-34)	
7.87 (95% CI 5.5-11.7)	

RANDOMIZED TRIAL OF PELVIC RADIATION WITH AND WITHOUT CONCURRENT CISPLATIN IN PATIENTS WITH A PELVIC ONLY RECURRENCE OF ENDOMETRIAL CANCER

Institution IMRT Credentialing is required when IMRT is to be used before registering any patient on this trial. A Knowledge Assessment for this study must be completed by the treating radiation oncologist before registering patients on this trial.

For patients with tumors involving the distal vagina and clinically negative groins, the bilateral inguino-femoral lymph node regions should be treated to 4500 cGy.

3-D conformal or IMRT boost is allowed for patients who are not candidates for brachytherapy.

GOG FOUNDATION®

PFS

HR 1.5 (95% CI: 0.88 – 2.55)

GOG FOUNDATION®

Radiation therapy remains the standard of care for pelvic only/vaginal cuff recurrences Low grade endometrioid cancers highly represented (81.5%) 32% of patients treated with radiation therapy recurred

GOG-0238

OS

HR 1.14 (95% CI: 0.57 – 2.28)

Ongoing Trials

First Line: **CDK 4/6 inhibition** Nuclear export inhibition

A Phase 3 Randomized, Open-label, Active**comparator Controlled Clinical Study of Pembrolizumab versus Platinum Doublet Chemotherapy in Participants With Mismatch Repair Deficient (dMMR) Advanced or Recurrent Endometrial Carcinoma in the First-line Setting** (KEYNOTE-C93/GOG-3064/ENGOT-en15)

Global lead: GOG (PI: Slomovitz co-PI: Backes)

ENGOT PI: S.Pignata

KEYNOTE-177: Robust Activity of Pembro Monotx Compared to SOC in Stage IV MSI-H/dMMR CRC

dian study follow-up: 32.4 months (range, 24.0 – 48.3); PFS (time from randomization to first documented disease progre ession or death) assessed per RECIST v1.1 by BIC Superiority of pembrolizumab vs chemotherapy for PFS was demonstrated at the pre-specified one-sided a = 0.0117; Data cut-off: 19Feb2020

Thierry Andre, MD

	Pembrolizumab N = 153	Chemotherapy N = 154
ORR, n (%)	67 (43.8)	51 (33.1)
Difference, estimate (95% CI) <i>P</i> -value	10.7 (0	(-0.2-21.3) .0275
Best Overall Response, n (%)		
Complete response	17 (11.1)	6 (3.9)
Partial response	50 (32.7)	45 (29.2)
Stable disease	32 (20.9)	65 (42.2)
Disease control rate (CR+PR+SD)	99 (64.7)	116 (75.3)
Progressive disease	45 (29.4)	19 (12.3)
Not evaluable	3 (2.0)	2 (1.3)
No assessment	6 (3.9)	17 (11.0)
Median time to response (range), mo	2.2 (1.8-18.8)	2.1 (1.7-24.9)

t-off: 19Feb2020; Response assessed per RECIST v1.1 by BICR.

Duration of Response assessed per RECIST v1.1 by BICR; Data cut-off: 19Feb2020.

The same And and Arts

GOG 3064/ ENGOT–en15/MK KN-C93: 1L dMMR platinumdoublet chemotherapy vs pembro (with formal cross over)

1:1

N=350

Phase 3, multi-center, randomized, open-label

Key Eligibility Criteria:

- Stage III or IV, persistent/ recurrent, or metastatic EC
- Measurable/non-measurable disease (radiological apparent)
- dMMR/MSI-H
- No previous chemo for first line except as part of chemoradiation
- Prior adjuvant/neoadjuvant chemotherapy allowed, as long as completed > 6 mths before recurrence
- ECOG 0-1

Potential Stratification:

- Previous radiation and/or adj chemotherapy
- Histology endometrioid vs. non-endometrioid

Background on CDK 4/6 Inhibition

- Most endometrial tumors are hormonally driven (type 1 endometrioid) oncogenic signal
- options for later lines
- There is established clinical proof of concept for CDK 4/6i in metastatic endometrial cancer
- in enhanced efficacy

adenocarcinoma); estrogen signaling through estrogen receptor acts as an

• Not all patients can handle more toxic treatments; low grade endometrioid cancer should be treated with endocrine therapy in the 1L, leaving cytotoxic

 Endometrial cancer endocrine sensitivity and frequent cell cycle deregulation suggest that coupling mechanisms of CDKi and estrogen blockade could result

ongress **ENGOT-EN3/NSGO-PALEO:** VIRTUAL 2020 Efficacy (ITT population)

Primary endpoint: PFS

CI, confidence interval; HR, hazard ratio; PFS, progression-free survival

Mirza MR et al. Ann Oncol. 2020;31(suppl 4). Abstract LBA28.

ENGO

uropean Network of

Secondary endpoint: Disease control rate*

* = at 24 weeks

Phase 2, two-stage study of letrozole and abemaciclib in estrogen receptor (ER) positive recurrent or metastatic endometrial cancer (EC)

•**Regimen:** Letrozole 2.5mg PO daily and Abemaciclib 150 mg PO BID until progression or toxicity

Objective Response Rate

RESPONSE

Best Overall Response

Complete Response (CR)

Partial Response (PR)

Stable Disease (SD)

Progressive Disease (PD)

Not evaluable

ORR, % (95% CI)

Promising Early signal with combined AI and **CDK4/6** inhibition in ER+ EC

- Colon-Otero et al ESMO 2020
 - Letrozole 2.5 mg oral +Ribociclib 400 mg oral QD
 - PFS12 weeks 55%
 - PFS24 weeks 35%
 - PFS24 weeks in grade 1-2 EC 45%
 - Median PFS and OS 5.4 and 16

Table 2	Subset analysis of PFS	
Total Pat	tients PFS ≥24 weeks	11/4
Ovarian	group	4/20
Low-g	rade serous	3/3 (*
High-g	grade serous	1/17
Endome	trial group	7/20
Grade	1 to 2	5/11
High-g	grade	2/9 (2

EQ132-303/GOG-3075/ENGOT en-17: A Randomized, Double-Blinded, Placebo-Controlled Phase 3 Study of Lerociclib with Letrozole, versus Placebo in Combination with Letrozole, in Participants with **Advanced or Recurrent Grade 1 or Grade 2 Endometrioid**

Letrozole 2.5 mg PO QD and Lerociclib 150 mg PO BID

Letrozole 2.5 mg PO QD and Placebo

PI: Mahdi ENGOT PI: Ray-Coquard

Prospective double-blind, randomized phase III ENGOT-EN5/GOG-3055/SIENDO study of oral selinexor/placebo as maintenance therapy after first-line chemotherapy for advanced or recurrent endometrial cancer

Ignace Vergote,¹ Alejandro Pérez Fidalgo,² Erika Hamilton,³ Giorgio Valabrega,⁴ Toon Van Gorp,¹ Jalid Sehouli,⁵ David Cibula,⁶ Tally Levy,⁷ Stephen Welch,⁸ Debra Richardson,⁹ Eva Maria Guerra Álía,¹⁰ Giovanni Scambia,¹¹ Stéphanie Henry,¹² Pauline Wimberger,¹³ David Miller, ¹⁴ Jerónimo Martínez,¹⁵ Bradley Monk,¹⁶ Sharon Shacham,¹⁷ Mansoor Raza Mirza,^{17,18} Vicky Makker¹⁹

¹Catholic University Leuven, Cancer Institute at University Hospitals, Belgium, European Union, ²Hospital Clinico Universitario de Valencia, Spain, ³Sarah Cannon Research Institute USA, ⁴University of Torino, Candiolo Cancer Institute, FPO-IRCCS, Italy, ⁵European Competence Center for Ovarian Cancer, Charité Comprehensive Cancer Center, Charité–Berlin University of Medicine, Germany, ⁶Charles University and General Faculty Hospital Prague, Czech Republic, ⁷Wolfson Medical Center, Holon, affiliated with Sackler Faculty of Medicine, Tel Aviv University, Israel,⁸London Health Sciences Centre, UK⁹University of Oklahoma Medical Center, USA,¹⁰Hospital Universitario Ramón y Cajal, Spain,¹¹Fondazione Policlinico Universitario A. Gemelli IRCCS, Italy, ¹²Centre de Maternité Sainte Elisabeth, Namur, Belgium, ¹³Technische Universitat Dresden, University Hospital Carl Gustav Carus, Germany, ¹⁴University of Texas Southwestern Medical Center; Harold C. Simmons Comprehensive Cancer Center, USA, ¹⁵Hospital Universitario Virgen de la Arrixaca, Spain, ¹⁶Biltmore Cancer Center, USA, ¹⁷Karyopharm Therapeutics, USA, ¹⁸Rigshospitalet, Copenhagen University Hospital, Denmark, ¹⁹Memorial Sloan Kettering Cancer Center, USA

GOG FOUNDATION®

GOG FOUNDATION[®]

Primary Endpoint: PFS in ITT Population

Vicky Makker, M.D., ENGOT-EN5/GOG-3055/SIENDO

Selinexor (n=174): 5.7 mo (95% CI 3.81-9.20) Placebo (n=89): 3.8 mo (95% CI 3.68-7.39)

Audited* (by electronic case report form) HR = 0.705 (95% CI 0.499-0.996)**One-sided P value = 0.024**

Unaudited* (by interactive response technology) HR = 0.76 (95% CI 0.543 - 1.076)**One-sided P value = 0.063**

*In 7 patients (2.7% of 263), the stratification factor of CR/PR was incorrect and was corrected by the Investigators prior to database lock and unblinding. The statistical analysis was validated by the independent ENGOT statistician and approved by the IDMC.

CI, confidence interval; HR, hazard ratio; mo, months; PFS, progression-free survival

Preliminary Analysis of a Prespecified Exploratory Subgroup PFS: Patients with p53 wild-type EC

Vicky Makker, M.D., ENGOT-EN5/GOG-3055/SIENDO

+ Censored Selinexor Placebo 18 7 5

Median PFS

Selinexor (n=67): 13.7 mo (95% CI 9.20-NR) Placebo (n=36): 3.7 mo (95% CI 1.87-12.88)

Audited

HR = 0.375 (95% CI 0.210-0.670) Nominal one-sided P value = 0.0003

Unaudited HR = 0.407 (95% CI 0.229-0.724) Nominal one-sided P value = 0.0008

CI, confidence interval; HR, hazard ratio; mo, months; PFS, progression-free survival

ENGOT-EN20/GOG3083/XPORT-EC-042 Randomized, blinded Phase 3 international study of oral Selinexor once weekly versus placebo for maintenance therapy in patients with p53wt endometrial carcinoma responding to front line

Primary Objective: To evaluate the efficacy of selinexor compared to placebo as maintenance therapy in patients with p53wt advanced or recurrent endometrial cancer

Stratified by:

- Primary stage IV vs recurrent
- PR vs CR
- Prior CPI (yes/no)

n = 220 PFS (HR 0.7)**Key Eligibilities**

- Known p53wt EC by central NGS
- Primary stage IV or recurrent EC
- Received at least 12 weeks of taxaneplatinum chemotherapy (1st or 2nd line)

PR/CR Per RECIST v1.1

Second Line:

INCMGA 0012-204/GOG-3038 POD1UM-204

An Umbrella Study of INCMGA00012 Alone and in Combination With Other **Therapies in Participants With Advanced or Metastatic Endometrial Cancer** Who Have Progressed on or After Platinum-Based Chemotherapy

CPI = checkpoint inhibitor therapy.

Note: Participants in Group A or Group B who experience disease progression on INCMGA00012 monotherapy may be eligible for further treatment with 1 of the combination. regimens.

*Participants naive to CPI therapy will be prioritized for central MSI testing to confirm eligibility for Group A, regardless of dMMR status.

Primary Endpoint = ORR PI: Slomovitz, B

NCT04463771

POD1UM-204: Phase 2, open-label, nonrandomized, umbrella study of retifanlimab alone or combined with other therapies in recurrent advanced/metastatic endometrial cancer*

<u>Closed Groups:</u> *Group C (unselected): completed enrollment (Retifanlimib+Epacadostat), Group E (CPI Naïve, PD-L1+): enrollment closed (Retifanlimab+Epacadostat)

MSI-H Endometrial Cancer - anti-LAG-3/anti-TIM-3/anti-PD-1 combination rationale

- Analysis of LAG-3 expression in the The Cancer Genome Atlas dataset showed a wide range of expression among different cancer types. Multiple solid tumors, including endometrial cancer, have considerably high expression of LAG-3 (Panda et al 2020).
- high LAG-3 expression measured by mRNA sequencing correlates significantly with high TMB
- tumor associated LAG-3+ lymphocytes are higher in MMR-deficient tumors compared with intact tumors
- TIM-3 and LAG-3 are frequently co-expressed with PD-1 in TILs
- rationale for PD-1, LAG 3, and TIM-3 combination blockade support exploring the clinical activity of the triplet combination approach in MSI-H/dMMR advanced endometrial cancer with evidence of disease progression on or after prior PD-(L)1 therapy

Predicting the Future

MK-3475-B21/ENGOT-en11/GOG-3053 **KEYNOTE-B21**

A Phase 3, Randomized, Double-Blind Study of Pembrolizumab versus Placebo in Combination With Adjuvant Chemotherapy With or Without Radiotherapy for the Treatment of Newly Diagnosed High-Risk Endometrial Cancer After Surgery With Curative Intent

- FIGO (2009) Surgical Stage I or II with myometrial invasion of non-endometrioid histology
 - of any histology with known aberrant p53 expression or p53 mutation
- FIGO (2009) Surgical Stage III or IVA of any histology

Closed to accrual PI: Slomovitz, B, Barber, E

Stage (I/II vs III/IVA)

- Planned radiation (EBRT vs Chemo-EBRT vs no EBRT)
- Histology (non-endometrioid vs endometrioid)

NCT04634877

Endometrial Cancer: 1st line metastatic recurrent

Front-line, metastatic or recurrence PI: Powell *ENGOT led	GOG-3031/RUBY NCT03981796	A Phase 3, Randomized, Double-blind, Multicenter Study of Dostarlimab (TSR-042) Plus Carboplatin- paclitaxel Versus Placebo Plus Carboplatin-paclitaxel in Patients With Recurrent or Primary Advanced Endometrial Cancer	CLOSED TO ACCRUAL
Front-line, metastatic or recurrence PI: Westin Co-PI: Moore *GOG led	GOG-3041/DUO-E NCT04269200	A Randomised, Multicentre, Double-blind, Placebo- controlled, Phase III Study of First-line Carboplatin and Paclitaxel in Combination With Durvalumab, Followed by Maintenance Durvalumab With or Without Olaparib in Patients With Newly Diagnosed Advanced or Recurrent Endometrial Cancer	CLOSED TO ACCRUAL
Front-line, metastatic or recurrent PI: Slomovitz, Backes *GOG led	GOG-3064/c93 NCT05173987	A Phase 3 Randomized, Open-label, Active- comparator Controlled Clinical Study of Pembrolizumab Versus Platinum Doublet Chemotherapy in Participants With Mismatch Repair Deficient (dMMR) Advanced or Recurrent Endometrial Carcinoma in the First-line Setting	Recruiting

Endometrial Cancer: 1st line metastatic recurrent

Front-line, metastatic or	Attend	Phase III Double-blind Controlled Trial of Ate
recurrence	NCT03603184	With Paclitaxel and C Advanced/Recurrent I
Front-line, metastatic or	NRG-GY-018	Testing the Addition of t Pembrolizumab to the U
recurrence PI: Eskander	NCT03914612	(Paclitaxel and Carbopla Endometrial Cancer

Double-blind Randomized Placebo I Trial of Atezolizumab in Combination itaxel and Carboplatin in Women With I/Recurrent Endometrial Cancer	CLOSED
Addition of the Immunotherapy Drug umab to the Usual Chemotherapy Treatment and Carboplatin) in Stage III-IV or Recurrent al Cancer	Recruiting

Predicting Future in First Line RecurrentdMMR

Chemo + I/O +/- PA

Scenario #1	Positive
Scenario #2	Positive
Scenario #3	Negative
Scenario #4	Negative

RP	LEAP-001	
	Positive	Either regimen or CS
	Negative	Chemo I/O; C93??
	Positive	Pembro/Len or C93
	Negative	Chemo; EXPORT; CDK4/6

Predicting Future in First Line RecurrentdMMR

Chemo + I/O +/- PA

Scenario #1	Positive
Scenario #2	Positive
Scenario #3	Negative
Scenario #4	Negative

Scenario #5

Positive or Negativ

RP	LEAP-001	
	Positive	
	Negative	
	Positive	
	Negative	
́е	Positive or Negative	B21: Positive

Predicting Future in First Line RecurrentpMMR

	Chemo + I/O +/- PARP	LEAP-001	
Scenario #1	Positive	Positive	Chemo+I/O or Pem/Le
Scenario #2	Positive	Negative	Chemo+I/O
Scenario #3	Negative	Positive	Pem/Len; EXPORT, CDK4/6
Scenario #4	Negative	Negative	Chemo; EXPORT, CDK4/6

Predicting Future in First Line RecurrentpMMR

	Chemo + I/O +/- PARP	LEAP-001	
Scenario #1	Positive	Positive	
Scenario #2	Positive	Negative	
Scenario #3	Negative	Positive	
Scenario #4	Negative	Negative	
Scenario #5	Positive or Negative	Positive or Negative	Positive

The Future is Bright

