Post-PARP Inhibition Data in Platinum-Sensitive Recurrent Disease

Katherine Fuh, MD, PhD

University of California, San Francisco

Mechanisms of platinum resistance^{1–4}

DNA, deoxyribonucleic acid; ECM, extracellular matrix; HR, homologous recombination; MMR, mismatch repair; NER, nucleotide excision repair; NHEJ, non-homologous end joining; Pt, platinum. 1. Damia G et al. Cancers (Basel). 2019;11(1):119. 2. Lv P et al. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188577. 3. Menghi F et al. Sci Transl Med. 2022;14(652):eabn1926. 4. Matei D et al. Cancer Res. 2012;72(9):2197-2205.

Mechanisms of PARPi resistance

53BP1, tumor suppressor p53-binding protein 1; BRCA, BRCA DNA repair associated gene; BRCA, breast and ovarian cancer susceptibility protein; HR, homologous recombination; MDR1, multidrug resistance mutation 1; miR, microRNA; PARP, poly (ADP-ribose) polymerase; PARPi, PARP inhibitor.

Lee EK, Matulonis UA. Cancers (Basel). 2020;12(8):2054

Overlapping mechanisms of PARP inhibitor and platinum resistance^{1,2}

Mechanism	Proteins involved
PARP activity alteration Loss of PARG Increased stabilization of replication forks	RAS P13K/AKT PARP
Altered ion channel drug accumulation Upregulation of drug efflux pumps Intracellular drug inactivation	VRAC MRP 2
Restoration of BRCA function through secondary reversion mutation Modification of other proteins	BRCA1/2 53BP1 RIF1 Shieldin complex

53BP1, tumor suppressor p53-binding protein 1; BRCA, BRCA DNA repair associated gene; ERCC1, ERCC excision repair 1, endonuclease non-catalytic subunit; HR, homologous recombination; HRR, homologous recombination repair; MDR1, multidrug resistance mutation 1; PARG, poly (ADP-ribose) glycohydrolase; PARP, poly (ADP-ribose) polymerase; PARPi, poly (ADP-ribose) poly (A

1. McMullen M et al. Cancers (Basel). 2020;12(6):1607. 2. Flynn MJ, Ledermann JA. Cancer Drug Resist. 2022;5(2):424-435.

OReO/ENGOT-ov38: study design

Patients

- Relapsed non-mucinous epithelial ovarian cancer
- One prior course of PARPi maintenance therapy
- CR/PR to most recent platinum regimen or NED after surgery^a with no rising CA-125
- Documented BRCAm status by local testing
- No limit to number of prior lines of therapy

BRCAm cohort

- gBRCAm or sBRCAm by local testing
- Prior PARPi exposure for ≥18 months after first-line chemotherapy or ≥12 months after second-line or later chemotherapy

- gBRCAm-negative by local testing; may include patients with undetected sBRCAm
- Prior PARPi exposure for ≥12 months after first-line chemotherapy or ≥6 months after second-line or later chemotherapy

- 2:1 randomization stratified by:
- Prior bevacizumab
- ≤3 vs ≥4 prior lines of platinum-based chemotherapy

Primary endpoint

 Investigator-assessed PFS (modified RECIST v1.1)

Secondary endpoints

- Time to RECIST/CA-125 progression or death
- Time to first subsequent therapy or death
- Time to second subsequent therapy or death
- Time to treatment discontinuation or death
- Overall survival
- HRQoL
- Safety

^a NED was permitted if optimal cytoreductive surgery was conducted prior to chemotherapy.

bid, twice daily; *BRCA*, BRCA DNA repair associated gene; *BRCA*m, *BRCA* mutated; CA-125, cancer antigen 125; CR, complete response; *gBRCA*m, germline *BRCA* mutation; HRQoL, health-related quality of life; NED, no evidence of disease; PARPi, poly (ADP-ribose) polymerase inhibitor; PFS, progression-free survival; PR, partial response; RECIST, Response Evaluation Criteria in Solid Tumors; *sBRCA*m, somatic *BRCA* mutation. Pujade Lauraine E et al. ESMO Annual Meeting 2021; Abstract LBA33.

OReO/ENGOT-ov38: a statistically significant PFS benefit was observed with olaparib in the *BRCA*m cohort

BRCA, BRCA DNA repair associated gene; BRCAm, BRCA mutated; CI, confidence interval; HR, hazard ratio; PFS, progression-free survival. Pujade Lauraine E et al. ESMO Annual Meeting 2021; Abstract LBA33.

OReO/ENGOT-ov38: in exploratory analyses, benefit in the non-BRCAm cohort appeared consistent irrespective of HRD status

Non-BRCAm cohort: HRD-positive

Non-BRCAm cohort: HRD-negative

BRCA, BRCA DNA repair associated gene; BRCAm, BRCA mutated; CI, confidence interval; HR, hazard ratio; HRD, homologous recombination deficiency; PFS, progression-free survival. Pujade Lauraine E et al. ESMO Annual Meeting 2021; Abstract LBA33.

SOLO2/ENGOT-ov21: maintenance olaparib in *BRCA*m recurrent PSOC

Patients

- Relapsed, high-grade serous or endometrioid ovarian cancer^a
- BRCAm
- Received ≥2 previous lines of platinum-based chemotherapy
- Responded to most recent platinum regimen

Primary Endpoint

Secondary Endpoint

Investigator-assessed PFS

OS. PFS2, TFST, TSST, TDT, HRQoL^e

Olaparib 300 mg bid C:1 randomization Stratified by: Response to previous chemotherapy^b Length of platinum-free interval^c Placebo Study treatment continued until disease progression^d

Investigator-assessed PFS

a Includes primary peritoneal or fallopian tube cancer. ^b Complete or partial response. ^c >6–12 or >12 months. ^d Or until discontinuation criteria were met, and treatment could continue beyond progression if the investigator deemed the patient to be experiencing benefit. ^e Assessed by the TOI of the FACT-O.

bid, twice daily; BRCA DNA repair associated gene; BRCAm, BRCA mutated; CI, confidence interval; FACT-O, Functional Assessment of Cancer Therapy – Ovarian; HR, hazard ratio; HRQoL, health-related quality of life; OS, overall survival; PFS, progression-free survival; PSOC, platinum-sensitive ovarian cancer; TDT, time to study treatment discontinuation or death; TFST, time to first subsequent therapy or death; TOI, trial outcome index; TSST, time to subsequent therapy or death.

1. Poveda A et al. ASCO Annual Meeting 2020. Abstract 6002. 2. Lynparza Prescribing Information. AstraZeneca. Revised March 2022.

SOLO2/ENGOT-ov21 post hoc analyses: efficacy of platinumbased chemotherapy reduced in *BRCA1/2m* platinum-sensitive recurrent EOC with prior olaparib maintenance

Decreased response to 2L/3L platinum-based chemotherapy after prior PARPi in *BRCA*m EOC: results from a singleinstitution retrospective study

^a PARPi utilized by these patients were olaparib (13), niraparib (4), rucaparib (1) or veliparib (2).

BRCA, BRCA DNA repair associated gene; BRCAm, BRCA mutated; EOC, epithelial ovarian cancer; PARP, poly (ADP-ribose) polymerase; PARPi, poly (ADP-ribose) polymerase inhibitor; PFS, progression-free survival. Rose PG et al. Anticancer Drugs. 2021;32(10):1086–1092.

Targeting resistance and acquired vulnerabilities to overcome PARPi resistance

Targeting PARPi resistance

- a) HR-deficient tumors usually have high genomic instability and are thought to present an increased number of neoantigens on their surfaces
- b) PARPi have been shown to induce PD-L1 expression and upregulate cGAS-STING signaling, which might further boost recruitment and/or activation of CD8+ T cells
- c) Inhibition of RTKs may inhibit reactivation of the HR pathway in tumors with acquired resistance to PARPi
- Inhibition of NAD+ synthesis might further enhance the cytotoxicity of PARPi through indirect inhibition of PARylation
- e) Suppressing restored replication fork protection in PARPiresistant cells
- f) Inhibiting MMEJ inhibitors of POLQ
- g) Targeting ATM or RNF168 to promote HR in the absence of BRCA1

ATM, ATM serine/threonine kinase; ATR, ATR serine/threonine kinase; BET, bromodomain and extraterminal domain; BRCA, BRCA DNA repair associated protein; CD, cluster of differentiation; cGAS, cyclic GMP-AMP synthase; CHEK1, checkpoint kinase 1; EGFR, endothelial growth factor receptor; HR, homologous recombination; IGF1R, insulin-like growth factor 1 receptor; MHC, major histocompatibility complex; MMEJ, microhomology-mediated endjoining; NAD, nicotinamide adenine dinucleotide; NAM, nicotinamide; NAMPT, nicotinamide phosphoribosyltransferase; NANN, nicotinamide monoucleotide; PALB2, partner and localizer of BRCA2; PARP, poly (ADP-ribose) polymerase; PARPi, poly (ADP-ribose) polymerase inhibitor; PD-1, programmed death receptor 1; PD-L1, programmed death receptor-ligand 1; PI3K, phosphoinositide 3-kinase; POLQ, DNA polymerase theta; RNF168, ring finger protein 168; RTK, receptor tyrosine kinase; STING, stimulator of interferon genes; TCR, T-cell receptor; VEGFR, vascular endothelial growth factor.

Dias MP et al. Nat Rev Clin Oncol. 2021;18(12):773-791.

DNA damage repair pathway alterations contribute to platinum and PARPi resistance

DNA damage repair pathway	Key pathway functions	Key genes	Effect of pathway alterations on therapeutic resistance	
Homologous Recombination (HR)	Repair of DSBs or stalled replication forks during S and G2 phases of cell cycle	BRCA1, BRCA2, RAD51, HSP90	Reactivation of HR pathway enables repair of DSBs and resolves replisome blocks, promoting cancer cell progression through the cell cycle despite the presence of cytotoxic DNA damage	
Non-Homologous End Joining (NHEJ)	Repair of DSBs during interphase	53BP1	Loss of 53BP1 re-wires NHEJ pathway, reactivating HR independent of BRCA1	
Base Excision Repair (BER)	Repair of SSBs and DNA base lesions	and DNA base lesions $PARP-1, XRCC1, Pol \beta$ Functional BER pathway leads to loss of synthesis PARPi resistance		
Nucleotide Excision Repair (NER)	Removes "bulky lesions" which distort the DNA double helix, including intra-strand crosslinks formed by platinum adducts	ERCC1, XPF	Upregulation of ERCC1 and XPF potentially restores NER function. NER pathway alteration potentially confers sensitivity to platinum, and not PARPi	
Fanconi Anemia (FA)	Removes intra-strand DNA crosslinks, coordinates DNA replication by fine-tuning mitotic checkpoints and replication fork stabilization	FANCC, FANCD2, FANCA	Mutations in FA pathway genes may have a similar effect to <i>BRCA1</i> and <i>BRCA2</i> mutation, in promoting progression of cancer cell through the cell cycle, even in setting of DNA damage and replication stress	
Mismatch Repair (MMR) Deficiency	Recognize, excise and resynthesize mismatched or unmatched DNA base pairs or insertion- deletion loops	MLH1, MSH2	MMR deficiency results in microsatellite instability, interfering with detection of cytotoxic DNA damage, allowing cancer cells to proliferate despite DNA damage	

53BP1, tumor suppressor p53-binding protein 1; BRCA, BRCA DNA repair associated gene; DSB, double-strand break; ERCC1, ERCC excision repair 1, endonuclease non-catalytic subunit; FANCA, FA complementation group A; FANCC, FA complementation group C; FANCD2, FA complementation group D2; HSP90, heat shock protein 90; *MLH1*, MutL homolog 1; *MSH2*, MutS homolog 2; PARPi, poly (ADP-ribose) polymerase inhibitor; RAD51C, RAD51 paralog C; SSB, single-strand break.

McMullen M et al. Cancers (Basel). 2020;12(6):1607.

Reactivation of HR repair

Resistance Mechanism	Function
BRCA (or HR gene) reversion mutation	Restores open reading frame of gene, resulting in functional protein expression
Loss of BRCA1 promoter methylation	Restores BRCA1 function
Upregulated HSP90	Promotes BRCA-independent RAD51 loading onto damaged DNA
BRCA1 c-terminal domain mutation	Upregulation of BRCA1, in absence of BRCA1 reversion mutation
Loss 53BP1	Recruits Shieldin complex to inhibit DNA resection, initiating HR in a BRCA-independent manner

Select active trials targeting DNA damage repair pathways to overcome platinum and PARPi resistance

Study name/NCT #	Target	Study treatment	Study population	Study phase, design
COCOS, NCT02502266 ^{1,2}	Angiogenesis/PARP	Cediranib + olaparib, or chemotherapy	Platinum resistant or refractory OC	II/III, RCT
EFFORT, NCT03579316 ^{1,2}	WEE-1/PARP	Adavosertib + olaparib, or adavosertib monotherapy	Recurrent OC with progression on prior PARPi therapy	II, RCT
NCT02901899 ^{1,2}	DNMT/PD-1	Guadecitabine + pembrolizumab	Recurrent PROC	II, open-label
NRG-GY029, NCT05295589 ^{3,4}	PI3K/PARP	Copanlisib + olaparib vs chemotherapy	Recurrent PROC with progression on prior PARPi therapy	II, RCT
CAPRI, NCT034623424	ATR/PARP	AZD6738 + olaparib	Recurrent OC (platinum-sensitive or platinum-resistant)	II, open-label
REVOCAN, NCT048261984	DNA damage/PARP	AsiDNA + niraparib, olaparib or rucaparib	Recurrent PSOC with prior PARPi therapy	lb/II, open-label
NIRVANA-R, NCT04734665 ⁴	Angiogenesis/PARP	Niraparib + bevacizumab maintenance	Recurrent PSOC with prior PARPi therapy	II, open-label
NCT04669002 ^{4,5}	Top1/PARP	EP0057 + olaparib	Advanced OC including PROC and prior PARPi therapy	II, open-label
NCT050719376	BET/PARP	ZEN003694 + talazoparib	Recurrent PSOC with progression on prior PARPi therapy	II, open-label
ComBET, NCT05327010 ⁶	BET/PARP	ZEN003694 + talazoparib	Advanced molecularly-selected solid tumors	II, open-label
ANLOLA, NCT04566952 ⁶	TK/PARP	Anlotinib + olaparib	Recurrent PSOC	II, open-label
NCT05407584 ^{6,7}	CA125	Oregovomab + PLD	Recurrent OC with progression on prior PARPi therapy	II, open-label
NCT04267939 ⁸	ATR/PARP	Elimusertib + niraparib	Advanced solid tumors and EOC	l, open-label
NCT04703920 ^{8,9}	HDAC/PARP	Talazoparib + belinostat	Metastatic breast cancer, metastatic castration resistant prostate cancer, and metastatic OC	l, open-label
NCT045863358	PI3K/PARP	CYH33 + olaparib	DDR gene mutations and/or PIK3CA mutations; progression on prior PARPi therapy; recurrent PROC	l, open-label

ATR, ATR serine/threonine kinase; BET, bromodomain and extraterminal domain; DDR, DNA damage response; DNMT, DNA methyltransferase; EOC, epithelial ovarian cancer; HDAC, histone deacetylase; OC, ovarian cancer; PARP, poly (ADP-ribose) polymerase; PARPi, PARP inhibitor; PD-1, programmed death receptor 1; PLD, pegylated liposomal doxorubicin; PROC, platinum-resistant ovarian cancer; PSOC, platinum-sensitive ovarian cancer; RCT, randomized controlled trial; TK, tyrosine kinase; Top1, topoisomerase-1.

1. McMullen M et al. Cancers (Basel). 2020;12(6):1607, 2. ClinicalTrials.gov. NCT0252266, NCT04826198, NCT03462342, NCT04669002, Accessed Sep 27, 2022, 4. ClinicalTrials.gov. NCT05295589, NCT04734665, NCT04826198, NCT03462342, NCT04669002, Accessed Sep 27, 2022, 5. Duska, LR et al. *Expert Opin Investig Drugs*. 2021;30(2):103-110. 8. ClinicalTrials.gov. NCT04267393, NCT04703920, Accessed Sep 27, 2022, 9. Campbell P, Thomas CM. J Oncol Pharm Pract. 2017;23(2):143-147, 10. ClinicalTrials.gov. NCT04566335, Accessed Sep 27, 2022.

- There are overlapping mechanisms of resistance that develop against PARP inhibitors and platinum-based chemotherapy¹
- Additional sequencing studies for PARP inhibitor resistance are needed¹
- Retrospective and post hoc analysis data highlight that prior exposure to PARP inhibitors decreases response to 2L/3L platinum-based chemotherapy^{2,3}
- Novel strategies to overcome PARP inhibitor resistance are under investigation¹