Front-Line Trials and Current Landscape

Amanda Nickles Fader, MD

Johns Hopkins University Baltimore, Maryland, USA

2024 SGO Winter Meeting

January 25, 2024

The Challenge of Treating **Advanced/Recurrent Endometrial Cancer**

- Despite frequent initial-or subsequent—treatment responses, prolonged remission or curative intent remain elusive for most patients with metastatic solid tumors
- Greatest contributor to cancer mortality: treatment-resistant, metastatic disease
- 5-year survival for patients with advanced/recurrent endometrial cancer disease 15-20%

oCarboplatin/paclitaxel (C/P): standard of care oC/P alone in GOG/NRG Oncology trials: Median PFS rates of patients with biomarker unselected or mismatch repair proficient tumors ~8-13 months

- High-grade or measurable disease, tumors with rare histologies, non-Hispanic Black women
- The reality: cytotoxic chemotherapy is only moderately effective in EC
- **Tumoral molecular/mutational profile is key**

Carboplatin and Paclitaxel for Advanced (NRG Oncology/GOG0209)

Miller J Clin Oncol, 2012, Powell, J Clin Oncol 2022,

New Developments in Endometrial Cancer

Courtesy of Stephanie Gaillard, MD, PhD

A Decade of Practice-Changing Advancements in the **Treatment of Advanced-Stage Endometrial Carcinoma**

Carboplatin and Paclitaxel for Advanced **Endometrial Cancer: Final Overall Survival and Adverse Event Analysis of a Phase III Trial** (NRG Oncology/GOG0209)

MD¹; Virginia L. Filiaci, PhD²; Robert S. Mannel, MD³; David E. Cohn, MD⁴; Takashi Matsumoto, MD⁴ S. Tewari, MD⁶; Paul DiSilvestro, MD⁷; Michael L. Pearl, MD⁶; Peter A. Argenta, MD⁶; Matthew A. Powell, MD¹⁶; Susan L. Zweizig, MD¹¹; David P. Warshal, MD¹²; Parviz Hanjani, MD¹³; Michael E. Carney, MD¹³; Helen Huang, MS²; David Cella, PhD¹⁵ Richard Zaino, MD18; and Gini F. Fleming, MD17

Adjuvant Chemotherapy plus Radiation for Locally Advanced Endometrial Cancer

Daniela Matei, M.D., Virginia Filiaci, Ph.D., Marcus E. Randall, M.D., David Mutch, M.D., Margaret M. Steinhoff, M.D., Paul A. DiSilvestro, M.D., Katherine M. Moxley, M.D., Yong M. Kim, M.D., Ph.D., Matthew A. Powell, M.D., David M. O'Malley, M.D., Nick M. Spirtos, M.D., William Small, Jr., M.D., et al.

ORIGINAL ARTICLE

Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer

Mansoor R. Mirza, M.D., Dana M. Chase, M.D., Brian M. Slomovitz, M.D., René dePont Christensen, Ph.D., Zoltán Novák, Ph.D., Destin Black, M.D., Lucy Gilbert, M.D., Sudarshan Sharma, M.D., Giorgio Valabrega, M.D., Lisa M. Landrum, M.D., Ph.D., Lars C. Hanker, M.D., Ashley Stuckey, M.D., et al., for the RUBY Investigators

Carboplatin and paclitaxel plus avelumab compared with carboplatin and paclitaxel in advanced or recurrent endometrial cancer (MITO END-3): a multicentre, open-label, randomised, controlled, phase 2 trial

Sandro Pignata, MD 🔗 🖂 🛛 Prof Giovanni Scambia, MD 🛛 Clorinda Schettino, MD 🖉 Laura Arenare, MSc 🔹 Carmela Pisano, MD • Davide Lombardi, MD • et al. Show all authors • Show footnotes

Durvalumab Plus Carboplatin/Paclitaxel Followed by Maintenance Durvalumab With or Without Olaparib as First-Line Treatment for Advanced Endometrial Cancer: The Phase III DUO-E Trial

Authors: Shannon N. Westin, MD, MPH 堕 🖾 , Kathleen Moore, MD, Hye Sook Chon, MD, Jung-Yun Lee, MD 堕 , Jessica Thomes Pepin, MD, Michael Sundborg, MD, Ayelet Shai, MD, PhD, ... SHOW ALL ... on behalf of the DUO-E Investigators AUTHORS INFO & AFFILIATIONS

ournal of Clinical Oncology > List of Issues

ORIGINAL REPORTS Gynecologic Cancer

Randomized Phase III Trial of Paclitaxel and Carboplatin Versus Paclitaxel and Ifosfamide in Patients With Carcinosarcoma of the Uterus or Ovary: An NRG Oncology Trial

Check for updates

Matthew A. Powell, MD¹ ^{CO}; Virginia L. Filiaci, PhD²; Martee L. Hensley, MD³; Helen Q. Huang, MS²; Kathleen N. Moore, MD⁴; Krishnansu S. Tewari, MD⁵; Larry J. Copeland, MD⁶; Angeles A. Secord, MD⁷; David G. Mutch, MD⁸; Alessandro Santin, MD⁹; David P. Warshal, MD¹⁰; Nick M. Spirtos, MD¹¹; Paul A. DiSilvestro, MD¹²; Olga B. Ioffe, MD¹³; and David S. Miller, MD¹⁴

ORIGINAL ARTICLE

Randomized Phase III Trial of Paclitaxel and Carboplatin Versus Paclitaxel and Ifosfamide in Patients With Carcinosarcoma of the Uterus or **Ovary: An NRG Oncology Trial**

Matthew A. Powell, MD¹; Virginia L. Filiaci, PhD²; Martee L. Hensley, MD³; Helen Q. Huang, MS²; Kathleen N. Moore, MD⁴; Krishnansu S. Tewari, MD⁵; Larry J. Copeland, MD⁶; Angeles A. Secord, MD⁷; David G. Mutch, MD⁸; Alessandro Santin, MD⁹; David P. Warshal, MD¹⁰; Nick M. Spirtos, MD¹¹; Paul A. DiSilvestro, MD¹²; Olga B. loffe, MD¹³; and David S. Miller, MD¹⁴

ORIGINAL ARTICLE

Pembrolizumab plus Chemotherapy in Advanced Endometrial Cancer

Ramez N. Eskander, M.D., Michael W. Sill, Ph.D., Lindsey Beffa, M.D., Richard G. Moore, M.D., Joanie M. Hope, M.D., Fernanda B. Musa, M.D., Robert Mannel, M.D. Mark S. Shahin, M.D., Guilherme H. Cantuaria, M.D., Eugenia Girda, M.D., Cara Mathews, M.D., Juraj Kavecansky, M.D., et al.

Volume 40, Issue 9

Published in final edited form as

Clin Cancer Res. 2020 August 01; 26(15): 3928-3935. doi:10.1158/1078-0432.CCR-20-0953.

Randomized phase II trial of carboplatin-paclitaxel compared to carboplatin-paclitaxel-trastuzumab in advanced (stage III-IV) or recurrent uterine serous carcinomas that overexpress Her2/Neu (NCT01367002): updated overall survival analysis

Amanda N. Fader¹, Dana M. Roque², Eric Siegel³, Natalia Buza⁴, Pei Hui⁴, Osama Abdelghany⁴, Setsuko Chambers⁵, Angeles Alvarez Secord⁶, Laura Havrilesky⁶, David M. O'Malley⁷, Floor J. Backes⁷, Nicole Nevadunsky⁸, Babak Edraki⁹, Dirk Pikaart¹⁰, William Lowery¹¹, Karim ElSahwi¹², Paul Celano¹³, Stefania Bellone⁴, Masoud Azodi⁴, Babak Litkouhi¹⁴, Elena Ratner⁴, Dan-Arin Silasi⁴, Peter E. Schwartz⁴, Alessandro D Santin^{4,*}

Mutation Spectra Across Endometrial Carcinomas

G Getz et al. Nature 497, 67-73 (2013) doi:10.1038/nature12113

nature displayed.

- Mismatch repair proficient (pMMR)HER2 and/or p53 overexpressed/mutated tumors have the worst prognosis
- We must focus our efforts on drug development and novel synergistic combination strategies in this patient population

NCCN Guidelines Version 2.2023 Endometrial Carcinoma

NCCN Guidelines Index Table of Contents Discussion

FIGURE 1: PATHOLOGY AND GENOMICS IN ENDOMETRIAL CARCINOMA (The decision to use molecular testing/classification depends on the availability of resources and the multidisciplinary team of each center)^{f,g}

^f Adapted with permission from Murali R, Delair DF, Bean SM, et al. Evolving roles of histologic evaluation and molecular/genomic profiling in the management of endometrial cancer. J Nat Compr Canc Netw 2018;16:201-209.

National Comprehensive Cancer Network®

ESGO/ESTRO/ESP

Kommoss et al, Annals Oncol, 2018

Talk Objectives

- Choice **Overload!**
- The paradox of choice

PORTEC-3 Study Design

Key eligibility criteria:

- Newly diagnosed endometrial carcinoma s/p TAH/BSO +/- LND
- Stage I, endometrioid grade 3 with deep myometrial invasion or LVSI (or both)
- Endometrioid stage II or III
- Stage I-III with serous or clear cell histology (IA with +MI)
- No residual disease

De Boer et al, Lancet **Oncol**, 2019

PORTEC-3 Results

Overall survival and failure-free survival

GOG FOUNDATION®

GOG 258 Study Design

Key eligibility criteria:

- Newly diagnosed III/IV endometrial carcinoma or I/II serous/clear cell with +cytology
- Curative intent TH/BSO +/- LN sampling/dissection
- <2 cm residual disease

XRT 45Gy in 25 fx Cisplatin 50 mg/m2 D1 + 29+/- Vaginal brachytherapy

Carboplatin (AUC 6) Paclitaxel 175 mg/m² (Q3W, 6 cycles)

Matei D, et al. N Engl J Med. 2019;380(24):2317-2326.

GOG 258

Conclusions: PROs indicate that the chemoradiotherapy group experienced worse HRQoL and GI toxicity compared to patients randomized to chemotherapy alone for locally advanced endometrial cancer though based on the MID, these were not clinically meaningful differences. The GI symptom subscale was a reliable and valid scale that has value for future trials.

SGO 2023 Annual Meeting: Recurrence-free survival was not improved with the combination over chemotherapy alone. After a median follow-up of 112 months, the HR for overall survival with chemoradiotherapy (CRT) was 1.05. Local recurrences better with CRT, but increased distant recurrences

Matei, N Engl J Med 2019; 380:2317-2326

PORTEC-3 and GOG 258 molecular analyses Relapse-Free Survival based on modified Pr

TCGA group	n	Treatment	5-yr RFS	HR (95% CI)	5-year OS	HR (95% CI)
p53abn	93 (23%)	EBRT versus CisRT + chemo	36.2% 58.6%	1 0.52 (0.30-0.91)	41.8% 64.9%	1 0.55 (0 30 1.00)
POLEmut	51 (12%)	EBRT versus CisRT + chemo	96.6% 100%	1 0.02 (<0.01->10 ⁵)	96.6% 100%	1 0.02 (<0.01->10 ⁵)
MMRd	137 (33%)	EBRT versus CisRT + chemo	75.5% 68%	1 1.29 (0.68-2.45)	84% 78.6%	1 1.33 (0.64 -2.75)
NSMP	129 (32%)	EBRT versus CisRT + chemo	67.7% 79.7%	1 0.68 (0.36-1.3)	87.6% 89.3%	1 0.68 (0.26-1.77)

TCGA = The Cancer Genome Atlas; NSMP = no specific molecular profile; EBRT = external beam radiation; CisRT = cisplatin/radiotherapy. Leon-Castillo, 2020.

Relapse-Free Survival based on modified ProMiSe Algorithm Molecular Status

Clements et al, IGCS 2023

- Phase II Randomized
- I^e End-Point: PFS
- N= 349

GOG#0086P

- Eligibility:
- Stage III or IVA EC
 measurable disease
- Stage IVB or Recurrent EC (whether there is measurable disease or not)
- No prior Chemotherapy

Arm 1:

Paclitaxel 175 mg/m2 IV over 3 hours day 1 Carboplatin AUC = 6 IV day 1 **Bevacizumab** 15mg/kg IV day 1 Maintenance regimen - Bevacizumab 15mg/kg IV every 21 days until disease progression or prohibition of further therapy.

Arm 2:

Paclitaxel 175 mg/m2 IV over 3 hours day 1 Carboplatin AUC = 5 IV day 1 **Temsirolimus** 25 mg IV days 1 and 8 Maintenance regimen – Temsirolimus 25 mg IV weekly. Days 1,8 and 15 until disease progression or prohibition of further therapy.

Arm 3: Ixabepilone 30 mg/m2 IV over 1 hour day 1 Carboplatin AUC = 6 IV day 1 Bevacizumab 15mg/kg IV day Maintenance regimen - Bevacizumab 15mg/kg IV every 21 days until disease progression or prohibition of further therapy.

> PI: Carol Aghajanian, M.D. From: 9/14/2009 to 9/9/2014 ClinicalTrials.gov Identifier:NCT00977574

GOG 0086-P: p53

Courtesy of Dr. Kimberly Leslie

From GOG Study 86P Survival by Treatment Group Integrated for Missense TP53 and IHC p53 Over-Expressed (IHC for p53 may serve as a predictive biomarker for bevacizumab upfront + chemotherapy, Thiel...Leslie, JCO, 2022).

86 116 96 115

88 117 357 462

55 of 213 (26%) of the patients on GOG 86P met the criteria to be classified within this group.

p53 Over-Expressed (OE) staining by IHC

TP53 missense mutation by sequencing

R248 <u>o</u> 12% R273 U 10% 8% R17: • 4% Y220 **c** 2%

Median Overall Survival 30.0 months on bevacizumab + chemo versus 14.4 months for temsirolimus + chemo, a significant improvement in outcomes for a high risk patient group with generally poor OS with standard therapy.

OS Hazard Ratio 0.28 [0.14-0.59] when Courtesy of Dr. Kimberly Leslie given upfront with chemotherapy.

Why are mutations in p53 potentially relevant to bevacizumab + chemotherapy sensitivity?

Cell cycle checkpoint abrogation: Cells with mutated p53 lack the normal cell cycle checkpoints, preventing DNA repair. This makes cancer cells *more vulnerable to chemotherapy*.

Angiogenesis: Mutated p53 enhances VEGF expression and tumor angiogenesis, making cells *more vulnerable to antiangiogenics*.

GOG-3055/ENGOT-EN5/SIENDO (NCT03555422)

- Selinexor, a first-in-class oral selective inhibitor of the nuclear export compound that selectively binds to nuclear protein exportin 1 and inhibits its export, and blocks the nuclear export of tumor suppressor, growth regulatory, and anti-inflammatory proteins
- Phase 3, multicenter, double-blind, placebo-controlled, randomized study; maintenance after chemotherapy (stage IV or recurrent endometrial cancer); N=263
- Selinexor 80 or 60 mg on days 1, 8, 15, and 22 of each 28-day cycle
- Primary endpoint: median PFS 5.7 vs 3.8 months; HR 0.70 (p=0.0486)
- In pre-specified subgroup of p53wt: median PFS 13.7 vs 3.7 months; HR 0.38 (p=0.0006)

Vergote, JCO 2023

ENGOT-EN5/GOG-3055/SIENDO

Intention-to-treat population

patients with TP53 wild-type endometrial cancer

Vergote, JCO 2023

P53 wild type maintenance therapy

Selinexor

- XPO1 exports the major tumor suppressor proteins away from the nucleus
- Cancer cells
 - Overexpress XPO1
 - Inactivate cytoplasmic p53 through protein degradation
- Selinexor inhibits XPO1 nuclear export
 - Leads to retention and reactivation of TSPs in the nucleus and stabilization of p53
 - Results in selective killing of cancer cells

Makker et al, JCO, 2022

P53 restoration of p53 mediated apoptosis

KRT-232-11: Navtemadlin

Phase 2/3 Study of Navtemadlin as Maintenance Therapy in Subjects with TP53WT Advanced or Recurrent Endometrial Cancer Who Responded to Chemotherapy 8/GOG-3089

Oral MDM2 inhibitor

 Restores p53 activity to drive apoptosis of wild type TP53 cells

• Expression of pro-apoptotic Bcl-2 family proteins

Treatment Based Upon Molecular Make Up: HER2

- Her2/neu overexpression by IHC demonstrated in 14-60% of USC. Estimates vary widely due to lack of standardized algorithms for interpretation and scoring of Her2 immunostains in endometrial cancer
- Dysregulation of *Her2/neu oncogene* reported in 27% of USC in Whole Exome Sequencing (WES) studies performed by TCGA network (Levine DA, Nature 2013)
- HER2/neu functions as preferred partner for heterodimerisation with any of the other members of the EGF receptor family (HER1, HER3 and HER4) and responsible for regulating cell growth and differentiation

JOURNAL OF CLINICAL ONCOLOGY

Factor Receptor 2/neu

Amanda N. Fader, Dana M. Roque, Eric Siegel, Natalia Buza, Pei Hui, Osama Abdelghany, Setsuko K. Chambers, Angeles Alvarez Secord, Laura Havrilesky, David M. O'Malley, Floor Backes, Nicole Nevadunsky, Babak Edraki, Dirk Pikaart, William Lowery, Karim S. ElSahwi, Paul Celano, Stefania Bellone, Masoud Azodi, Babak Litkouhi, Elana Datuar Day Arin Cilaci Datar E Schwarts and Alassandro D. Santin

Study Design

Randomized Phase II Trial of Carboplatin-Paclitaxel Versus Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth

- 61 patients with advanced stage/recurrent HER2+ USC
- 3+ IHC, or 2+ with FISH + (modified 2007 ASCO/CAP)
- Measurable/non-measurable disease

Improvement in PFS and OS for Advanced-Stage Disease with Addition of Trastuzumab

Newly Diagnosed, Stage I-IVB, HER2 positive uterine serous or carcinosarcoma

PI: Britt Erickson Co-PI: Amanda Fader Intl Co-PI: Clare Scott **Translx PI: Alessandro Santin**

> Arm 1: Carboplatin AUC 5 + paclitaxel 175 mg/m2 q 21 days x 6 cycles (may continue to 10 cycles if measurable disease and SD or PR)

Strata:

- Stage (I-II vs III-IV)
- Measurable vs. nonmeasurable dz
- **Histology** (serous vs carcinosarcoma)

Arm 2: Carboplatin AUC 5 + paclitaxel 175 mg/m2 q 21 days x 6 cycles + trastuzumab 8 mg/kg IV loading dose f/b 6 mg/kg IV q 21 days

NRG GY-026

Randomize 1:1:1

Maintenance trastuzumab

6mg/kg IV every 21 days x 1 year (or progression/ prohibitive toxicity)

Safety Lead-In (n=45)

Arm 3: Carboplatin AUC 5 + paclitaxel 175 mg/m2 q 21 days x 6 cycles + fixed dose trastuzumab 600 mg/ pertuzumab 600 mg SQ (with initial 1200 mg SQ pertuzumab loading dose w 1st cycle)

Maintenance fixed dose trastuzumab 600 mg/ pertuzumab 600 mg SQ q 21 days for 1 year (or until disease progression or prohibitive toxicity)

Immune Checkpoint Inhibitor Therapy in Endometrial Cancer

Pembrolizumab (KN-158): Robust Antitumor Activity in Patients With MSI-H Advanced EC

Variable	MSI-H EC n = 79	EC (biomarke unselected n = 107		
ORR % (95% CI)	48 (37-60)	11.2 (5.9-18.8)		
Complete response	11 (14)	0		
Partial response	27 (34)	12 (11.2)		
Stable disease	14 (18)	26 (24.3)		
Progressive disease	23 (29)	56 (52.3)		
Not evaluable	1 (1)	2 (1.9)		
Not assessed	3 (4)	11 (10.3)		

Marabelle, J Clin Oncol 2020

Dostarlimab (GARNET Cohorts A1 & A2): Clinical Benefit in dMMR and MMRp EC Patients

Variable	dMMR EC n = 103	MMRp EC n = 142
ORR % (95% CI)	46 (34.9-54.8)	19 (8.3-20.1)
Complete response	11 (10.7)	3 (2.1)
Partial response	35 (34.0)	16 (11.3)
Stable disease	13 (12.6)	31 (21.8)
Progressive disease	39 (37.9)	77 (54.2)
Not evaluable	3 (2.9)	0
Not done	2 (1.9)	15 (10.6)

Courtesy of Dr. Rebecca Arend

In the era of targeted and immunotherapies, how can we improve response to both cytotoxic chemotherapy and immunotherapies?

How can we improve response to checkpoint inhibitors?

Because of high recurrence rates, a variety of maintenance/ consolidation strategies following **completion of first-line** chemotherapy have been tested

Courtesy of Dr. Rebecca Arend **GOG** FOUNDATION[®]

NRG-GY018

Study Design

Key Eligibility Criteria

- Measurable stage III/IVA or measurable/nonmeasurable stage IVB or recurrent endometrial cancer
- Pathology report showing results of institutional MMR IHC testing
- ECOG PS 0, 1, or 2
- No prior chemo except prior adjuvant chemo if completed ≥12 mo before study

Stratification Factors

- dMMR vs pMMR
- ECOG PS (0 or 1 vs 2)
- Prior adjuvant chemo (yes vs no)

Median follow-up:

- IA1 data cutoff date of December 16, 2022: dMMR cohort, 12 months; pMMR cohort, 7.9 months
- Current analysis data cutoff date of August 18, 2023: dMMR cohort, 20.6 months; pMMR cohort, 15.8 months

Ramez N. Eskander

N = 816 (591 pMMR, 225 dMMR)

R

1:1

 Primary: PFS per RECIST v1.1 by investigator in pMMR and dMMR populations Secondary: Safety, ORR/DOR per RECIST v1.1 by BICR or investigator by treatment arm and MMR IHC status, OS in pMMR and dMMR populations, PRO/QoL in pMMR population, and concordance of MMR IHC testing at institution vs centralized

ENGOT-EN6-NSGO/GOG-3031/RUBY (NCT03981796) Phase 3, randomized, double-blind, multicenter study of dostarlimab plus carboplatin-paclitaxel versus placebo plus carboplatin/paclitaxel in patients with primary advanced or recurrent EC

Further study details can be found at Mirza MR, et al. N Engl J Med. 2023 Jun 8;388(23):2145-2158. Treatment ends after 3 years, PD, toxicity, withdrawal of consent, investigator's decision, or death, whichever occurs first. Continued treatment with dostarlimab or placebo beyond 3 years may be considered following discussion between the Sponsor and the Investigator. AUC, area under the plasma or serum concentration-time curve; BICR, blinded independent central review; DCR, disease control rate; DOR, duration of response, EC, endometrial cancer; ECOG PS, Eastern Cooperative Oncology Group performance status; EOT, end of treatment; HRQOL, health-related quality of life; IHC, immunohistochemistry; INV, investigator assessment; MMR, mismatch repair; MSI, microsatellite instability; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PRO, patient-reported outcome; R, randomization; RECIST v1.1, Response Evaluation Criteria in Solid Tumors version 1.1.

Dr Mansoor Raza Mirza

AtTEnd Study Design

- Endometrial carcinoma or carcinosarcoma
- Patients with advanced (stage III-IV) newly diagnosed or recurrent disease with no prior systemic chemotherapy for recurrence.
- In recurrent patients, one prior line of • systemic platinum-based regimen is permitted with a platinum-free interval ≥ 6 months.
- **ECOG 0-2**
- Normal organ and bone marrow function

Stratified by:

- Country
- Endometrioid vs. other histotypes
- Recurrent disease vs newly diagnosed
- pMMR vs dMMR vs non evaluable (centrally evaluated)

ECOG: Eastern Cooperative Oncology Group. pMMR: mismatch repair proficient. dMMR: mismatch repair deficient. AUC: area under the curve. PD: progressive disease. PFS: Progression free survival. OS: overall survival. HR: hazard ratio.

Nicoletta Colombo, MD

DUO-E study design

cancer

disease

relapse

sarcomas

Shannon N. Westin

*Six cycles of carboplatin at an area under the concentration-time curve of 5 or 6 mg per mL/min and paclitaxel 175 mg/m². bid, twice daily; CP, carboplatin/paclitaxel; durva, durvalumab; FIGO, International Federation of Gynaecology and Obstetrics; HRRm, homologous recombination repair mutation; IV, intravenously; ola, olaparib; pbo, placebo; q3(4)w, every 3(4) weeks; R, randomisation; RECIST, Response Evaluation Criteria for Solid Tumours.

	GY018 (816 pts)	RUBY (494 pts)	AtTEnd (550 pts)	Mito End-3 (125 pts)	Duo-E (718
Experimental Arm(s) C/P +	Pembrolizumab (PD-1)	Dostarlimab (PD-1)	Atezolizumab (PDL1)	Avelumab (PDL1)	Durvalumab (P olaparib (PARF
Study design; primary endpoint	RP3; PFS in parallel dMMR & pMMR cohorts	RP3; PFS and OS	RP3; PFS and OS	RP2; PFS	RP3; PFS in Du Control PFS in Duva+C Control
Measurable or evaluable Stage III/IV	YES	YES	YES	YES	YES
Non-measurable Stage IVB	YES	YES		NO	YES
Serous, Clear-Cell, Mixed Histologies	YES	YES	YES	YES	YES
Carcinosarcoma	NO	YES	YES	NO	YES
Recurrent Disease (%)	YES	YES	YES	NO	YES
Performance Status	0-2	0-1	0-2	0-1	0-1
Prior Radiation	YES	YES	YES	YES	YES
Prior Chemotherapy	YES	YES	YES	YES	YES
Time Since Adjuvant Chemo	≥12 months	≥6 months	≥6 months	≥6 months	≥12 months
Duration of maintenance therapy	14 cycles (~2 years)	3 years	Disease progression, toxicity, or other indication	Disease progression, toxicity, or other indication	Disease progrest toxicity, or other indication

PFS in **dMMR** Tumors

Mansoor R. Mirza et al. NEJM August 2023, Ramez N. Eskander et al. NEJM August 2023, Sandro Pignata et al. The Lancet Oncology 2023, Nicolatta Calamba at al ECMO 2022

Erzuonhoilkundo Innchruc

PFS in **pMMR** Tumors

Mansoor R. Mirza et al. NEJM August 2023, Ramez N. Eskander et al. NEJM August 2023, Sandro Pignata et al. The Lancet Oncology 2023, Nicoletta Colombo et al., ESMO 2023

OS Data: No benefit in All Comers-Ruby, AtTEnd, Mito End-3

Nicoletta Colombo, MD

RUBY Molecular Classification Algorithm

In RUBY Part 1, molecular classification was performed for all participants with WES results - 400 of 494 patients

Efficacy per molecular classification was an exploratory analysis.

dMMR, mismatch repair deficient; IHC, immunohistochemistry; MMRp, mismatch repair proficient; MSI-H, microsatellite instability-high; mut, mutated; NGS, next generation sequencing; NSMP, no specific molecular profile; PCR, polymerase chain reaction; POLs, polymerase epsilon; SCNA, somatic copy number alterations; TIL, tumor-infiltrating lymphocytes; TLS, tertiary lymphoid structures; TP53, tumor protein 53; WES, whole exome DNA sequencing; WT, wild type.

Dr Mansoor Raza Mirza

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

specific molecular profile; OS, overall survival; PBO, placebo; POLE, polymerase epsilon; TP53, tumor protein 53.

Consistent PFS Benefit in Histological Subgroups

Histology	Dostarlimab + carboplatin- paclitaxel (no. of events/no.	Placebo carbopla paclitan of patients)
Endometrioid carcinoma	64/130	89/13
Carcinosarcoma	14/24	18/22
Serous adenocarcinoma	36/55	35/48
Other	21/36	35/43

Hazard ratios are based on unstratified Cox regression model. CP, carboplatin-paclitaxel; HR, hazard ratio; PFS, progression-free survival.

Dr Mansoor Raza Mirza

Subgroup Analyses of PFS

Efficacy curves in the two MMR cohorts separated early in treatment, with a preserved separation throughout the evaluation period.

Benefit was observed in most subgroups, including among patients who had received previous adjuvant chemotherapy or radiation, among those with less common histologic subtypes and in patients who identify as Black or White.

Data cutoff: December 16, 2022. Eskander R et al SGO 2023 Abstro Histology

Endometrioid, G

Endometrioid, G

Other Types

Serous

Overall

NRG GY018: Phase 3 Trial of Pembrolizumab + Chemo for Measurable Stage 3 or 4a, Stage 4b, or Recurrent EC -PFS per RECIST v1.1 in pMMR Population **PFS by Histology in pMMR Population**

	No. of Patients			Hazard Ratio (95% CI)	
1 or G2	207				
3	96				
	128				
	155				
	586	0.0	0.5	1.0	1.5
			Experimenta	Better Control	Better

Durability of Response in Patients on GY018-Placebo

Central dMMR Waterfall Plot

Central pMMR Waterfall Plot

GOG FOUNDATION®

Durability of Response in Patients on GY018-Pembrolizumab

Central pMMR Waterfall Plot

Central dMMR Waterfall Plot

DA	ΤI	0	N°

NRG-GY018 Ad hoc Analyses

PFS by Methylation Status in dMMR Population

Placebo + CP 77 (2) 55 (3) 23 (9) 11 (16) 4 (22) 3 (23) 2 (24) 0 (26)

Ramez N. Eskander Data cutoff date: August 18, 2023.

PFS:	ITT	por	oula	tion	1					}	Control (N=241)	Durva (N=238)	Durva+Ola (N=239)
Drimoru	ondo	oint						Events,	n (%)		173 (71.8)	139 (58.4)	126 (52.7)
Filliary	enup	UIII						Median I	PFS (95%	CI),* months	9.6 (9.0–9.9)	10.2 (9.7–14.7)	15.1 (12.6–20.7)
	100 -							HR (95%	CI) vs Co	ontrol [†]		0.71 (0.57–0.89); <i>P</i> =0.003	0.55 (0.43–0.69); <i>P</i> <0.0001
	90 -	and			12 months			HR (95%	CI) vs Du	urva [†]			0.78 (0.61–0.99)
PFS, %	80 - 70 - 60 - 50 - 40 - 30 - 20 - 10 -		and the second sec	- and a second	61.5% 48.5% 41.1%	Last to the second	18 months 46.3% 37.8% 21.7%	└╺╋╋╋ ╺╋╋ ╺╋╋	+		Ov Durva Durva Contro	erall data maturity (51.0%
	0+	3	6	9	12	15	18	21	24	27	30 33		
No. at risk					Mont	hs since I	randomis	ation					
Durva+Ola Durva Control	239 238 241	214 211 213	198 188 184	169 138 125	139 105 86	95 69 45	51 45 26	30 26 10	16 13 3	7 5 1	3 0 0 0 1 0		

The median (range) duration of follow-up for PFS was 12.6 (0.0–31.6), 15.4 (0.0–29.1), and 15.4 (0.0–31.7) months in censored patients for the Control, Durva, and Durva+Ola arms, respectively. PFS rates were estimated by the KM method. *CI for median PFS is derived based on the Brookmeyer-Crowley method; *The primary PFS analysis for each comparison was performed separately. The HR and CI were estimated from a Cox proportional hazards model stratified by MMR and disease status. The CI was calculated using a profile likelihood approach. The P value was calculated using a log-rank test stratified by MMR and disease status. ITT, intent-to-treat; KM, Kaplan-Meier.

Shannon N. Westin

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

The median (range) duration of follow-up for OS was 18.6 (0.5–32.9), 18.4 (2.1–33.0), and 18.7 (1.1–33.4) months in censored patients for the Control, Durva, and Durva+Ola arms, respectively. OS rates were estimated by the KM method. *CI for median OS is derived based on the Brookmeyer-Crowley method; †The HRs were estimated from an unstratified Cox proportional hazards model. The CI was calculated using a profile likelihood approach. P values were calculated using an unstratified log-rank test. P values failed to reach statistical significance. NR, not reached.

Shannon N. Westin

Subgroup analysis of PFS: Durva+Ola vs Control By stratification factors and biomarker stat

Stratification factors (disease status, MMR status, and geographic region) are per the randomisation code. PD-L1 status in baseline tumour tissue was determined centrally using Ventana PD-L1 SP263 immunohistochemistry assay. Expression was assessed using a TAP score, calculated based on the proportion of the tumour area populated by tumour cells or immune cells with membranous PD-L1 staining. HRRm status was assessed in baseline tumour tissue using the Foundation One CDx NGS assay and includes a mutation in any of these genes: ATM, BRCA1, BRCA2, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, or RAD54L. HRRm status unknown includes patients recruited in China where HRR testing was not performed and patients with samples that were unavailable for testing.

Shannon N. Westin

-

HR	Durva+Ola	Control
(95% CI)	n/N (%)	n/N (%)
0.53 (0.42-0.67)	126/239 (52.7)	173/241 (71.8)
0.47 (0.33–0.66)	58/114 (50.9)	81/115 (70.4)
0.59 (0.43–0.81)	68/125 (54.4)	92/126 (73.0)
0.57 (0.44–0.73)	108/191 (56.5)	148/192 (77.1)
0.41 (0.21–0.75)	18/48 (37.5)	25/49 (51.0)
0.68 (0.44–1.06)	37/67 (55.2)	45/68 (66.2)
0.48 (0.36–0.63)	89/172 (51.7)	128/173 (74.0)
0.30 (0.15–0.58)	16/39 (41.0)	23/32 (71.9)
0.59 (0.44–0.80)	81/141 (57.4)	96/132 (72.7)
0.57 (0.36–0.89)	29/59 (49.2)	54/77 (70.1)
0.42 (0.31–0.57)	68/150 (45.3)	114/163 (69.9)
0.80 (0.55–1.16)	55/82 (67.1)	57/75 (76.0)
NC (NC–NC)	3/7 (42.9)	2/3 (66.7)

Background – Rational

- Advanced and metastatic (M+) EC is an heterogeneous tumor ^{1,2}
- Many of advanced EC tumors have significant deficiencies in DNA repair pathways
- P53 mutations are associated with high Copy Number Alterations (CNA)³
- Homologous replication deficiency (HRD) is significantly associated with P53 mutated EC⁴

➔ Frequent high DNA damage suggests the possibility to use PARP inhibitors as maintenance after chemotherapy

UTOLA objectives

Objectives	Endpoints Endpoint : Improvement of median PFS from 4.5 months (from randomization)				
Primary endpoint : PFS in the ITT Population					
Main secondary endpoints	 PFS according to P53 status PFS according to response rate OS in ITT and according to P53 status Safety (QoL) 				
Pre-specified other secondary endpoint	PFS according to HRD status				
MADRID ESVO					

Joly-Lobbdez ESMO 2023

Utola PFS: ITT

PFS* by investigator assessment: ITT

PFS calculated from randomization (end of CT)

1	1		1	1	1		1		
6	9	12	15	18	21	24	27	30	33
		N	Ionths si	nce rand	lomizatio	on			
47	38	27	21	18	14	10	7	4	3
(2)	(2)	(2)	(3)	(3)	(4)	(7)	(8)	(10)	(10)
21	17	12	9	8	7	5	4	4	3
(1)	(1)	(1)	(1)	(1)	(1)	(2)	(3)	(3)	(3)

Utola PFS by p53, HRD, or Both

(T) GINECO

PFS by investigator assessment : P53 status

PFS: According to HRD status

P53 WT – n= 68

PFS: HRD (LGE ≥6) and P53mut (exploratory analysis)

LGE ≥6, pMMR, P53 mut n=56

T GINECO

ENGOT-en9/A-AGO: A Phase 3 Randomized, Open-Label, Study of Pembrolizumab (MK-3475) Plus Lenvatinib (E7080/MK-7902) Versus Chemotherapy for First-line Treatment of Persistent, Recurrent, or Metastatic Endometrial Carcinoma (LEAP-001)

1:1

R

Stage III, IV or recurrent endometrial carcinoma
No prior chemotherapy (except chemoradiation)
ECOG 0 or 1
888 randomized patients

Stratify:

- MMR status (pMMR vs. dMMR)
 - If pMMR,
 - EGOG (0 versus 1)
 - Measurable disease (yes vs. no)
 - prior chemoradiation (yes vs. no)

Christian Marth et al. Int J Gynecol Cancer 2021

Pembrolizumab 200 mg IV infusion Q3W15 mg/kg q3w Up to 35 infusions

Lenvatinib 20mg orally QD

Up to 7 cycles

Carboplatin AUC 6 (-5) IV infusion Q3W

Up to 7 cycles
Paclitaxel 175 mg/m² IV infusion Q3W

001 Trial Evaluating KEYTRUDA® (pembrolizumab) Plus LENVIMA® (lenvatinib) as First-Line Treatment for Patients with Advanced or Recurrent Endometrial Carcinoma

> RAHWAY, N.J., & NUTLEY, N.J.--(BUSINESS WIRE)-- Merck (NYSE: MRK), known as MSD outside of the United States and Canada, and Eisai today announced that the Phase 3 LEAP-001 trial evaluating KEYTRUDA, Merck's anti-PD-1 therapy, plus LENVIMA, the orally available multiple receptor tyrosine kinase inhibitor discovered by Eisai, did not meet its dual primary endpoints of overall survival (OS) and progression-free survival (PFS) for the first-line treatment of patients with advanced or recurrent endometrial carcinoma whose disease is mismatch repair proficient (pMMR)/not microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR)/MSI-H.

At the final analysis, KEYTRUDA plus LENVIMA did not improve OS or PFS sufficiently to meet the study's prespecified statistical criteria in the first-line treatment of certain patients with advanced or recurrent endometrial carcinoma versus a standard of care, platinum-based chemotherapy doublet (carboplatin plus paclitaxel). The safety profile of KEYTRUDA plus LENVIMA was consistent with that observed in previously reported studies evaluating the combination. A full evaluation of the data from this study is ongoing. The companies will work with investigators to share the results with the scientific community.

KEYNOTE-C93/GOG-3064/ENGOT-en15: A phase 3, randomized, open-label study of first-line pembrolizumab versus platinum-doublet chemotherapy in mismatch repair deficient advanced or recurrent endometrial carcinoma.

Phase 3 KEYNOTE C93: First-Line Pembrolizumab vs Chemotherapy in dMMR¹

GOG FOUNDATION[®]

Summary

- Remarkable progress in treatment of upfront advanced/first-line recurrent endometrial cancer (EC) based on advancements in molecular understanding and development of novel drugs that target specific tumoral mutations/aberrations and protein expression levels
- Carboplatin/paclitaxel remains an important backbone of treatment for advanced/recurrent disease
 - Only moderate and limited effectiveness, associated with relatively short PFS and high, unsalvagable Ο recurrence rates
 - Escalation/add-on trial strategies appropriate in this setting, especially when treating patients with pMMR, Ο HER2 expressed/amplified, or p53 aberrant disease
- Endometrial cancer has great genomic heterogeneity
- Molecular profiling of EC tumors allows GYN and medical oncologists to realize the promise of precision-based medicine-several molecular biomarkers are prognostic and predictive
 - Test all patients and test early! 0
 - Targeted therapy options based upon mismatch repair status and HER2 Ο
 - Emerging therapeutic options for p53 aberrant v wildtype tumors and HRD positive EC Ο
 - Will molecular testing also allow for smarter radiation therapy strategies? Ο
- Ongoing and future trials will help clarify optimal treatment

Thank you

- Niskala, Ms. Lindsey Moeller
- Dr. Angeles Alvarez Secord
- Our patients
- All trial investigators, local trial Pls, colleagues enrolling

• GOG-F, Dr. Tom Herzog, Ms. Jenna Cummins, Ms. Cori

