Emerging Novel Therapies and Clinical Trials, 2nd Line & Beyond

Floor Backes, MD
The Ohio State University,
Wexner Medical Center and James Cancer Hospital
Columbus, Ohio, USA

2024 SGO Winter Meeting
January 25, 2024
NCCN Guidelines Version 1.2024
Endometrial Carcinoma

RECURRENT DISEASE

<table>
<thead>
<tr>
<th>Preferred</th>
<th>Second-Line or Subsequent Therapy</th>
</tr>
</thead>
</table>
| - Carboplatin/paclitaxel (category 1 for carcinosarcoma)
- Carboplatin/paclitaxel/pembrolizumab (except for carcinosarcoma) |
- Carboplatin/paclitaxel/dostarlimab-gxly (category 1)
- Carboplatin/paclitaxel/trastuzumab (for HER2-positive uterine serous carcinoma)
- Carboplatin/paclitaxel/trastuzumab (for HER2-positive carcinosarcoma) |
| Other Recommended Regimens |
- Carboplatin/docetaxel |
- Carboplatin/paclitaxel/bevacizumab |

Useful in Certain Circumstances

Biomarker-directed therapy: after prior platinum-based therapy including neoadjuvant and adjuvant

- MMR-proficient (pMMR) tumors
 - Lenvatinib/pembrolizumab (category 1)
 - TMB-H tumors
 - Pembrolizumab
 - MSI-H/dMMR tumors
 - Pembrolizumab
 - Dostarlimab-gxly

Other Recommended Regimens

- Cisplatin/doxorubicin
- Cisplatin/doxorubicin/paclitaxel
- Cisplatin
- Carboplatin
- Doxorubicin
- Liposomal doxorubicin
- Paclitaxel
- Albumin-bound paclitaxel
- Topotecan
- Bevacizumab
- Temsirolimus
- Cabozantinib
- Docetaxel (category 2B)
- Ifosfamide (for carcinosarcoma)
- Ifosfamide/paclitaxel (for carcinosarcoma)
- Cisplatin/ifosfamide (for carcinosarcoma)

Useful in Certain Circumstances

Biomarker-directed therapy

- pMMR tumors
 - Lenvatinib/pembrolizumab (category 1)
 - TMB-H tumors
 - Pembrolizumab
 - MSI-H/dMMR tumors
 - Pembrolizumab
 - Dostarlimab-gxly
 - Avelumab
 - Nivolumab
 - HER2-positive tumors (IHC 3+ or 2+)
 - Fam-trastuzumab deruxtecan-nxki
 - NTRK gene fusion-positive tumors
 - Larotrectinib
 - Entrectinib
Changing Molecular Landscape

PIK3CA 50-60%
CTNNB1 25%
FGFR 12%

25-35%
Mismatch repair deficiency

75-85%
PTEN inactivation

35-40%
ARID1A inactivation

20-30%
ERBB2/KRAS/BRAF/MEK pathway activation

Other factors
- TROP2 (>90%)
- FRα (64%)
- HRD (22%)
- PD-L1
- B7-H4
- CLDN6

Yen, Int J Gynecol Pathol 2021
Novel Agents and combinations for Recurrent Endometrial Cancer

• Immunotherapy
 - IO combinations (FGFR, TIGIT, LAG3,TIM3)

• Antibody Drug Conjugates
 - HER2
 - TROP2
 - FRα

• Targeting cell cycle regulation and DNA repair
 - PI3K inhibitors (eg, alpelisib)
 - CHK1 inhibitor (eg, afuresertib)
 - WEE1 inhibitor (eg, adavosertib, ZN-c312)
 - PARP inhibitor

• Hormonal therapy
 - Anti-estrogen, antiprogesterone, SERM/SERD
 - Combinations: mTOR, PIK3CA inhibitor, CDK4/6 inhibitor
Phase 2 KEYNOTE-158 Trial: Study Design

• Ongoing, international, multicohort, open-label phase 2 study of pembrolizumab in select advanced solid tumors that have progressed on SOC therapy
• Patients with previously treated, MSI-H/dMMR advanced endometrial cancer enrolled in cohorts D and K

Patients
- Age ≥18 years
- Histologically or cytologically confirmed advanced cervical cancer
- Progression on/intolerance to ≥1 line of standard therapy
- ECOG PS 0 or 1
- Tumor sample for biomarker analysis

Primary Endpoint: ORR (RECIST v1.1, ICR)
Secondary Endpoints: DOR, PFS, OS

Efficacy/safety assessed in all pts who received ≥1 dose pembro (all pts as treated)
 - DOR assessed in all pts who had a CR or PR

Phase 1 GARNET Study of Dostarlimab: Endometrial Cancer Cohorts

GARNET Trial Design

- **Part 1**: Dose finding
- **Part 2A**: Fixed-dose safety run-in
- **Part 2B**: Expansion cohorts

A1: dMMR/MSI-H EC
- N=153

A2: MMRp/MSS EC
- N=161

- **E**: NSCLC
- **F**: Non-endometrial dMMR/MSI-H basket
- **G**: PROC

- **Dostarlimab 500 mg Q3W x 4 cycles → dostarlimab 1000 mg Q6W to PD**
- **Until disease progression**

- **Primary endpoints**: ORR and DOR per RECIST V.1.1 (BICR assessment)

- **Key inclusion criteria**:
 - Progression on or after platinum doublet therapy
 - ≤ 2 prior lines of treatment for recurrent/adv disease
 - Measurable disease at baseline
 - Anti-PD-(L)1 naïve
 - Screening via local MMR/MSI testing (IHC, PCR, or NGS) in certified local laboratory; patient cohort assignment was by MMR IHC results
 - 2 scans demonstrating PD on or after latest systemic therapy

- **Cohort A1 – Dostarlimab treatment disposition at DCO: 70.5 (n=108)**
 - Discontinued: 29.4% (n=45) on treatment
 - Efficacy/safety assessed in all patients with measurable disease at baseline and had received ≥6 months dostarlimab (efficacy-evaluable population)

Single Agent Immunotherapy

<table>
<thead>
<tr>
<th></th>
<th>Keynote-158<sup>1</sup></th>
<th>GARNET MSI-H/dMMR</th>
<th>PHAEDRA</th>
<th>GARNET MSS/pMMR</th>
<th>KEYNOTE-028<sup>2</sup></th>
<th>NCT01375842<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase / type</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1b</td>
<td>1a</td>
</tr>
<tr>
<td>Population</td>
<td>Previously treated MSI-H</td>
<td>Previously treated MSI-H</td>
<td>dMMR</td>
<td>Previously treated MSS</td>
<td>Previously treated PD-L1+ MSS/pMMR</td>
<td>Recurrent EC MSS/pMMR</td>
</tr>
<tr>
<td>Patients, n</td>
<td>90</td>
<td>108</td>
<td>35</td>
<td>156</td>
<td>24</td>
<td>15</td>
</tr>
<tr>
<td>Treatment</td>
<td>Pembrolizumab</td>
<td>Dostarlimab</td>
<td>Durvalumab</td>
<td>Dostarlimab</td>
<td>Pembrolizumab</td>
<td>Atezolizumab</td>
</tr>
<tr>
<td>Prior lines</td>
<td>0 – >5</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
<td>1-3</td>
</tr>
<tr>
<td>ORR, %</td>
<td>48%<sup>*</sup></td>
<td>43.5%</td>
<td>47%</td>
<td>14.1%</td>
<td>13%</td>
<td>13</td>
</tr>
<tr>
<td>DCR, %</td>
<td>66%</td>
<td>56%</td>
<td>35%</td>
<td>26%</td>
<td>27%</td>
<td></td>
</tr>
<tr>
<td>DOR</td>
<td>NR (3-50+)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>mPFS</td>
<td>13.1 mo</td>
<td>Immature</td>
<td>8.3</td>
<td>1.8 mo</td>
<td>1.7 mo</td>
<td></td>
</tr>
<tr>
<td>mOS</td>
<td>@12-mo : 69%</td>
<td>NR</td>
<td>@12-month: 71%</td>
<td>NR</td>
<td>9.6 mo</td>
<td></td>
</tr>
<tr>
<td>Safety summary (TRAЕ grade ≥3)</td>
<td>12%</td>
<td>13%</td>
<td>3%</td>
<td>19%</td>
<td>16.7%</td>
<td>Any TRAE: 47%</td>
</tr>
</tbody>
</table>

We need better!

Estimated % probability of PFS
- **12 mo**: 46.4% (37.8%–54.5%)
- **24 mo**: 40.1% (31.6%–48.4%)

Median PFS: 6.0 mo (4.1–)

Number of patients at risk
- dMMR/MSI-H EC 143
- 125
- 81
- 65
- 64
- 59
- 55
- 53
- 52
- 46
- 41
- 40
- 33
- 29
- 28
- 24
- 21
- 19
- 16
- 12
- 11
- 8

Number at risk
- dMMR: 36
- 23
- 19
- 17
- 10
- pMMR: 35
- 12
- 5
- 1

GARNETT. Oaknin A at al. ASCO 2022

PHAEDRA Trial. Antill, J for ImmunoTher of Cancer 2021
Options for Combinations

PARPis and ICIs
- Neoantigens repertoire expansion
- Upregulation of costimulatory cell-surface receptors
- MHC II expression
- T cells infiltration

anti-VEGF and ICIs
- Vasculature normalization
- Maturation of DC
- Antigen presentation
- T cells infiltration and trafficking
- Downregulation of PD-L1 expression

Vascular normalization
- Anti-VEGF/R
- Increasing of infiltration and activation

Anti-PD1/PDL1
- Increasing of infiltration and activation
- Inhibition

Study 309/KEYNOTE 775 Design

Key eligibility criteria
- Advanced, metastatic, or recurrent endometrial cancer
- Measurable disease by BICR
- 1 Prior platinum-based CT
- ECOG PS 0–1
- Tissue available for MMR testing

Stratification factors
MMR status (pMMR vs dMMR) and further stratification within pMMR by:
- Region (R1: Europe, USA, Canada, Australia, New Zealand, and Israel, vs R2: rest of the world
- ECOG PS (0 vs 1)
- Prior history of pelvic radiation (yes vs no)

Primary endpoints
- PFS by BICR
- Overall survival

Secondary endpoints
- Objective response rate
- HRQoL
- Pharmacokinetics
- Safety

Key exploratory endpoint
- Duration of response

Doxorubicin
60 mg/m² IV Q3W
or
Paclitaxel
80 mg/m² IV QW
(3 weeks on/1 week off)

Lenvatinib
20 mg PO QD
+ Pembrolizumab
200 mg IV Q3W

Treat until progression or unacceptable toxicity

aPatients may have received up to 2 prior platinum-based CT regimens if 1 is given in the neoadjuvant or adjuvant treatment setting.
bMaximum of 35 doses. cMaximum cumulative dose of 500 mg/m².

Makker et al, NEJM 2022
Study 309 / Keynote-775

ORR: 30.3% vs 15.1% in pMMR; 40% vs 12% in dMMR
DOR: 9.2 vs 5.7 months in pMMR; NR (2.1-20.4) vs 4.1 in dMMR

Makker et al, NEJM 2022, Makker JCO 2023

FDA approved for pMMR (July 2021)
EMA approved for pMMR/dMMR (Nov 2021)
Table 3. Adverse Events of Any Cause with an Incidence of 25% or More among All the Patients in Either Treatment Group, According to Preferred Term.

<table>
<thead>
<tr>
<th>Event</th>
<th>Lenvatinib plus Pembrolizumab (N=406)</th>
<th>Chemotherapy (N=388)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Any Grade</td>
<td>Grade ≥3*</td>
</tr>
<tr>
<td>Any adverse event</td>
<td>405 (99.8)</td>
<td>361 (88.9)</td>
</tr>
<tr>
<td>Hypertension†</td>
<td>260 (64.0)</td>
<td>154 (37.9)</td>
</tr>
<tr>
<td>Hypothyroidism†‡</td>
<td>233 (57.4)</td>
<td>5 (1.2)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>220 (54.2)</td>
<td>31 (7.6)</td>
</tr>
<tr>
<td>Nausea</td>
<td>201 (49.5)</td>
<td>14 (3.4)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>182 (44.8)</td>
<td>32 (7.9)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>149 (36.7)</td>
<td>11 (2.7)</td>
</tr>
<tr>
<td>Weight decrease</td>
<td>138 (34.0)</td>
<td>42 (10.3)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>134 (33.0)</td>
<td>21 (5.2)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>124 (30.5)</td>
<td>7 (1.7)</td>
</tr>
<tr>
<td>Proteinuria†</td>
<td>117 (28.8)</td>
<td>22 (5.4)</td>
</tr>
<tr>
<td>Anemia</td>
<td>106 (26.1)</td>
<td>25 (6.2)</td>
</tr>
<tr>
<td>Constipation</td>
<td>105 (25.9)</td>
<td>3 (0.7)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>104 (25.6)</td>
<td>16 (3.9)</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>30 (7.4)</td>
<td>7 (1.7)</td>
</tr>
<tr>
<td>Alopecia</td>
<td>22 (5.4)</td>
<td>0</td>
</tr>
</tbody>
</table>
Atezolizumab and Bevacizumab in Recurrent Endometrial Cancer

<table>
<thead>
<tr>
<th>Total Number of Subjects</th>
<th>n=57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Activity</td>
<td></td>
</tr>
<tr>
<td>ORR for all</td>
<td>30% (95% CI 18-43)</td>
</tr>
<tr>
<td>ORR for MMRp</td>
<td>33% (95% CI 20-48)</td>
</tr>
<tr>
<td>Median DOR (months)</td>
<td>15 (95% CI 2.9-34)</td>
</tr>
<tr>
<td>Median PFS (months)</td>
<td>7.87 (95% CI 5.5-11.7)</td>
</tr>
</tbody>
</table>

No grade 4 AEs occurred. Dose interruptions, reductions, and discontinuations due to AEs occurred in: 79%, 4%, and 16% of patients.

Fuh, IGCS 2022
Options for Combinations

PARPIs and ICIs
- Neoantigens repertoire expansion
- Upregulation of costimulatory cell-surface receptors
- MCH II expression
- T cells infiltration

anti-VEGF and ICIs
- Vasculature normalization
- Maturation of DC
- Antigen presentation
- T cells infiltration and trafficking
- Downregulation of PD-L1 expression

Diagram showing the interaction between cGAS and STING pathways in the context of SCLC targeting.
DOMEC trial

Phase II; N=50
Durvalumab 1500 mg IV q4w + olaparib 300 mg BID
Primary endpoint PFS 6 months

6-month PFS: 34%; Median PFS 3.4 months; ORR 16%
TRAE grade ≥3 : 16%

Post, Gynecol Oncol 2022
IO after IO

- Arm A: Nivolumab 240 mg IV D1+15 with cabozantinib 40 mg daily (TKI - MET, VEGFR2, RET, AXL) q 28 days
- Arm B: Nivolumab
- Cross-over allowed.
- 94 vs 100% MSS tumors
- ORR 25 vs 11%
- Post-IO: N=20
 - MSI-H: 22%
 - 61% ≥3 prior lines
 - ORR 25%

Lenvatinib/pembrolizumab after IO

- Renal cell cancer
 - 104 patients with prior IO: ORR 62.5%

- Melanoma
 - LEAP-004: PD on or <12 weeks from last CPI
 - ORR 21.4%, OS 14 months

- Endometrial cancer
 - Rose: 8 dMMR patients: Lenvatinib/pembrolizumab: ORR 75%
 - Morton: 11 endometrial patients (8 dMMR, 3 pMMR): ORR 54.5%
 - Variety of single agent and combination therapy
Recurrence dMMR: DUAL Immunotherapy NRG-GY025

Recurrence dMMR Deficient Endometrial Carcinoma with Measurable or Non-measurable (detectable) Disease

STRATIFICATION
- Prior Radiation
- Prior anti-PD1/PD-L1 therapy
- Measurable disease (yes/no)

RANDOMIZATION
- Arm 1
 - Nivolumab Q3W and
 - Low-dose Ipilimumab Q6W (every other cycle x 4) and then nivolumab alone Q4W until disease progression, unacceptable toxicities or CR*
 - See Section 3.1
- Arm 2
 - Nivolumab Q3W x 8 cycles then Q4W until disease progression, unacceptable toxicities or CR*
 - See Section 3.1

*patients with CR will receive maintenance therapy for up to 12 additional months after radiologic evidence of complete response.

*Randomization is 2:1 (Arm 1 vs Arm 2). Twice as many patients will be randomized to Arm 1.

Activation Date: 2/7/22
Accrual: 16/90

Li-Chung, Vaccines 2021
GOG-3038/POD1UM-204

An Umbrella Study of INCMGA00012 Alone and in Combination With Other Therapies in Participants With Advanced or Metastatic Endometrial Cancer Who Have Progressed on or After Platinum-Based Chemotherapy (PI: Brian Slomovitz, MD)

Select eligibility criteria

- **Naive to CPI**
 - MSI-H (n=100)
 - dMMR or POLE mutations (n=40)
 - Unselected (n=40)
 - Eligible FGFR1/2/3 mutation or alteration (n=40)
 - MSS, PD-L1+ (n=40)
 - MSI-H (n=40)

- **Prior CPI allowed**
 - Retifanlimab
 - Retifanlimab + epacadostat
 - Retifanlimab + pemigatinib
 - Retifanlimab + epacadostat

- **CPI pretreated**
 - Retifanlimab + INCAGN02385
 - Retifanlimab + INCAGN02390

Target N=300

<table>
<thead>
<tr>
<th>Primary endpoint: ORR, per RECIST v1.1 and determined by ICR (group A)</th>
<th>Secondary objectives: DoR, DCR, PFS, OS (groups A-B); ORR (groups B-F); safety (all groups)</th>
</tr>
</thead>
</table>
| a Patients eligible to receive retifanlimab monotherapy will first be considered for group A until fully enrolled, unless they do not meet MSI-H criteria. Retifanlimab administered iv on day 1 of each 28-day cycle for up to 26 cycles, if patients continue to derive benefit and do not meet any study treatment discontinuation criteria. b Patients in group A or group B who experience disease progression on retifanlimab monotherapy may be eligible for further treatment with one of the combination regimens in groups D or E. c Closed enrollment groups. d Pemigatinib (FGFR1/2/3 inhibitor) administered orally qd. e INCAGN02385 and INCAGN02390 administered iv q2w. f dMMR, deficient mismatch repair; ICR, independent central review; MSI-H, microsatellite instability-high; MSS, microsatellite stable; POLE, DNA polymerase epsilon.
Antibody Drug Conjugates in Endometrial Cancer

Chau C, Lancet 2019
Targeting HER2

- Prevalence in uterine cancer ~25%
 - 75% of uterine serous carcinoma have TP53 alteration
 - No standard testing (NGS, IHC, FISH)

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trastuzumab deruxtecan</td>
<td>Topoisomerase I inhibitor</td>
</tr>
<tr>
<td>(DS-8201a or T-DXd)</td>
<td></td>
</tr>
<tr>
<td>BNT323/DB-1303</td>
<td>Topoisomerase I inhibitor</td>
</tr>
<tr>
<td>Ado-trastuzumab emtansine</td>
<td>Microtubule inhibitor derived from maytansine</td>
</tr>
<tr>
<td>(T-DM1)</td>
<td></td>
</tr>
</tbody>
</table>

Trastuzumab Deruxtecan (TDxd) DESTINY-PanTumor02 Phase II Trial

- N=40 endometrial cancer
- 22% prior Anti-HER2
- 1/3 ≥ 3 prior lines (median 2)
- 10% Black, 25% Asian
- IHC: 3+ 33%, 2+ 43%, 1+ 10%, 0/uk 15%
- ORR 57.5%, DCR 94%

- The most frequent TEAEs of any grade were nausea, vomiting, diarrhea, fatigue.
- Grade 3 or greater was rare (neutropenia, anemia).
- ILD/pneumonitis 10.5% (0.4% grade 3, 1.1% grade 5)
- Alopecia 22%

Meric-Bernstam, F. JCO 2023
Trastuzumab Deruxtecan (TDxd): DESTINY-PanTumor02 Phase II Trial

Meric-Bernstam, F. JCO 2023
STATICE TRIAL: Trastuzumab deruxtecan (DS-8201a or T-DXd)

- HER2 targeting; topoisomerase I inhibitor
- Phase II, N= 34 (22 high, 10 low), Japan
- Carcinosarcoma, HER2 IHC score ≥1+, >1 prior line
- 6.4 mg/kg → 5.4 mg/kg
- Median PFS 6.7 months (95% CI, 5.4 to 8.8)
- Pneumonitis/ILD in 9 (27%)

Nishikawa T, JCO 2023
BNT323/DB-1303: Phase I/2a

Phase 1 (Dose Escalation)
(HER2 IHC 3+, IHC 2+, IHC 1+ or ISH +, or HER2 amplification by NGS, or HER2 mutation by NGS)

<table>
<thead>
<tr>
<th>Dose (mg/kg)</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>n=3-6</td>
</tr>
<tr>
<td>10.0</td>
<td>n=3-6</td>
</tr>
<tr>
<td>8.0</td>
<td>n=3-6</td>
</tr>
<tr>
<td>7.0</td>
<td>n=3-6</td>
</tr>
<tr>
<td>6.0</td>
<td>n=3-6</td>
</tr>
<tr>
<td>4.4</td>
<td>n=3-6</td>
</tr>
<tr>
<td>2.2</td>
<td>n=1</td>
</tr>
</tbody>
</table>

Additional dose finding cohorts (A total of up to 20 participants)

- **RP2D/MTD**
 - RP2D=8 mg/kg

Dose extension
If a dose is confirmed to have a tolerable safety profile by the SMC, the cohort size may be backfilled to a maximum of 15-21 at any dose level ≥4 mg/kg. Up to 57 additional participants (HER2 low BC, HER2+ BC, HER2+low endometrial carcinoma, and HER2 activation mutation NSCLC) will be enrolled.

Phase 2a (Dose Expansion)

Cohort 2a Trastuzumab-treated HER2+ (IHC3+, IHC2+/ISH positive) gastric or gastroesophageal junction adenocarcinoma (N=30), HER2+ esophageal carcinoma (N=10), and HER2+ CRC (N=15)

Cohort 2b Both HER2 overexpression and HER2 low (IHC3+,2+,1+ or ISH positive) endometrial carcinoma, including UC and USC (N=30-60)

Cohort 2c HR+/HER2 Low (IHC2+/ISH negative, or IHC1+) BC (N=30-50)

Cohort 2d HER2+ (IHC3+, IHC2+/ISH positive) BC (N=20-40)

Cohort 2e NSCLC with activating HER2 mutation (N=15-30)

Cohort 2f HER2+ or HR+/HER2-low BC with treatment failure of trastuzumab deruxtecan (N=10, HER2+ BC; N=10, HR+/HER2-low BC)

Objectives

- **Dose Escalation**
 - Primary: safety and tolerability, MTD or RP2D
 - Secondary: efficacy, PK, and immunogenicity
 - Exploratory: biomarker and ER relationship

- **Dose Expansion**
 - Primary: safety and tolerability, efficacy
 - Secondary: PK, antidrug antibodies, efficacy
 - Exploratory: biomarker, ER relationship, population PK, neutralizing antibody, efficacy

>1 prior line. NCT05150691

Moore, K. ESGO 2023
DB-1303/BNT323

- HER2 targeting; topoisomerase I inhibitor
- N=32
- 59% prior IO
- 38% prior Anti-HER2
- 1/3≥3 prior lines
- 34% Black, 6% Asian
- ORR 10/17 (58.8%) (unconfirmed), DCR 94%

- The most frequent TEAEs of any grade were nausea, fatigue, and vomiting, grade 3 or greater was rare.
- Alopecia 3.1%
Targeting Folate Receptor (FR)-α

- FRα overexpression in ~64% of endometrial tumors

Drug Name vs Payload

<table>
<thead>
<tr>
<th>Drug Name</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luveltamab tazivibulin (STRO-002)</td>
<td>Hemiasterlin-derivative Tubulin-inhibitor</td>
</tr>
<tr>
<td>Mirvetuximab Soravtansine</td>
<td>Maytansinoid (DM4) → tubulin targeting</td>
</tr>
<tr>
<td>Farletuzumab ecteribulinm (MORAb-202, FZEC)</td>
<td>Eribulin → microtubule-depolymerizing</td>
</tr>
</tbody>
</table>

Assaraf et al. Drug Resistance Updates (2014); Moore et al. Cancer 2017
STRO-002-GM1: Phase 1 Dose-Expansion Cohort of Luveltamab tazevibulin (luvelta) in Recurrent EC

Key Inclusion and Exclusion Criteria

- Endometrial cancer
 - Excluded: leiomyosarcoma, stromal sarcomas and carcinosarcomas
- ≥1% FolRα expression by central IHC
- Recurrent disease
 - ≥1 platinum-based chemotherapy or 1 immunotherapy-based regimen
 - ≤3 prior regimens
- At least 1 target lesion

17 Patients Enrolled

Luveltamab tazevibulin Dosing Schedule

- Q3W cycles
- 5.2 mg/kg unless prior pelvic XRT, then 4.3 mg/kg X 2 cycles with option to dose escalate to 5.2 mg/kg

Endpoints

- Safety
- PK
- Anti-tumor activity assessed by ORR, DOR and PFS by RECIST v1.1
- CA-125

Most common TEAEs, n (%)

<table>
<thead>
<tr>
<th></th>
<th>Any grade</th>
<th>Grade ≥3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia</td>
<td>13 (76.5)</td>
<td>4 (23.5)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>12 (70.6)</td>
<td>3 (17.6)</td>
</tr>
<tr>
<td>Neutropenia†</td>
<td>11 (64.7)</td>
<td>9 (52.9)</td>
</tr>
<tr>
<td>Nausea</td>
<td>10 (58.8)</td>
<td>1 (5.9)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>10 (58.8)</td>
<td>0</td>
</tr>
</tbody>
</table>

DOR, duration of response; IHC, immunohistochemistry; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetic; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; XRT, radiotherapy.

ClinicalTrials.gov NCT03748186

Pothuri B. ESMO 2023
Luveltamab tazevibulin Showed Early Evidence Of Anti-tumor Activity in FolRα Expressing EC

Maximum Reduction in Target Lesions*

<table>
<thead>
<tr>
<th>TPS (%)</th>
<th>Overall FolRα ≥1% (n=16)</th>
<th>FolRα ≤25% (n=9)</th>
<th>FolRα >25% (N=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5 (15)</td>
<td>1 (11)</td>
<td>2 (29)</td>
</tr>
<tr>
<td>15</td>
<td>6 (25)</td>
<td>4 (44)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>1</td>
<td>30 (8)</td>
<td>4 (57)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>45 (30)</td>
<td>45 (30)</td>
<td></td>
</tr>
<tr>
<td>-30% Partial Response</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anti-tumor Activity*

<table>
<thead>
<tr>
<th></th>
<th>Overall FolRα ≥1% (n=16)</th>
<th>FolRα ≤25% (n=9)</th>
<th>FolRα >25% (N=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR</td>
<td>3 (19)</td>
<td>1 (11)</td>
<td>2 (29)</td>
</tr>
<tr>
<td>SD<sup>†</sup></td>
<td>8 (50)</td>
<td>4 (44)</td>
<td>1 (14)</td>
</tr>
<tr>
<td>PD</td>
<td>5 (31)</td>
<td>4 (44)</td>
<td></td>
</tr>
<tr>
<td>DCR</td>
<td>11 (69)</td>
<td>5 (56)</td>
<td>6 (86)</td>
</tr>
</tbody>
</table>

[†]3 unconfirmed PRs

Data cutoff: 04 August 2023. *n=16 response evaluable patients. DCR, disease control rate; EC, endometrial cancer; PR, partial response; Q3W, every 3 weeks; TPS, tumor proportion score.

Pothuri B. ESMO 2023
Targeting TROP2

TARGET: TROP2

- **Drug Name**
 - Sacituzumab govitecan (IMMU-132)
 - *approved in TNBC, urothelial*
 - SKB264/MK-2870

- **Payload**
 - SN-38 (irinotecan metabolite) → Topoisomerase I inhibitor
 - Belotecan derivative → Topoisomerase I inhibitor

TROP 2

- **Overexpression in endometrial cancer is common**
 - Present in 90+% of samples
 - 62% with expression in at least 50% of tumor cells
 - Implicated in intracellular signaling pathways
 - May be a modulator of EpCAM-induced cell signaling
 - Fosters cell migration

TROP2 Targeting: IMMU-132/Sacituzumab govitecan-hziy

- ORR 33% in 21 patients with persistent or recurrent endometrial cancer with at least 2+TROP2 by IHC (IMMU-132 study)
- ORR 22% and median PFS 5.7 months in an endometrial cancer cohort (n=28) with progression after prior platinum-based chemotherapy and anti-PD-1/PD-L1-directed therapy (TROPiCS-03 study NCT03964727)
- AE’s: neutropenia (58%), diarrhea (56%), anemia

ADCs under Development in Endometrial Cancer

<table>
<thead>
<tr>
<th>Monoclonal antibody target</th>
<th>Drug Name</th>
<th>Payload</th>
<th>Ongoing trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>B7-H4</td>
<td>XMT-1660</td>
<td>Auristatin F-Hydroxypropylamide (microtubule inhibitor)</td>
<td>NCT05377996 (Phase I)</td>
</tr>
<tr>
<td>B7-H4</td>
<td>SGN-B7H4V (1 EC)</td>
<td>Monomethyl Auristatin E</td>
<td>NCT05194072 (Phase I)</td>
</tr>
<tr>
<td>B7-H4</td>
<td>AZD8205</td>
<td>Topoisomerase I inhibitor</td>
<td>NCT05123482 (Phase I)</td>
</tr>
<tr>
<td>Folate Receptor α</td>
<td>Farletuzumab ecteribulin (MORAb-202, FZEC) (3 EC)</td>
<td>Eribulin (microtubule inhibitor)</td>
<td>NCT04300556 (Phase I/II)</td>
</tr>
<tr>
<td>Folate Receptor α</td>
<td>Mirvetuximab Soravtansine</td>
<td>Maytansinoid (DM4)→ tubulin targeting</td>
<td>NCT03835819 (Phase II combination with pembro)</td>
</tr>
<tr>
<td>TROP2</td>
<td>Sacituzumab govitecan (IMMU-132)</td>
<td>SN-38 (irinotecan metabolite) → Toiposomerase I inhibitor</td>
<td>NCT04251416 (Phase II) NCT03992131 (combination with rucaparib)</td>
</tr>
<tr>
<td>TROP2</td>
<td>SKB264/MK-2870</td>
<td>Belotecan derivative → Topoisomerase I inhibitor</td>
<td>NCT04152499 (Phase I/II) NCT06132958 (Phase III)</td>
</tr>
</tbody>
</table>
Targeting the Cell Cycle and DNA repair

Detection of DNA Damage Results in Activation of Checkpoints That Enforce Cell Cycle Arrest

TP53

NHEJ, BER, HR

M

G2/M Checkpoint

ATR/ATM

WEE-1

CHK1/2

G2

G1

Spindle Checkpoint

G1/S Checkpoint

NHEJ, BER, NER

S

M, **S**, **G1**, **G2**, **M**

Cyclin-dependent kinase

Cyclin

TP53

Radiotherapy chemotherapy

DNA damage

Cancer cells deficient in p53

Check point inhibition

Mitotic catastrophe and cell death

BER, base-excision repair; HR, homologous recombination; MMR, mismatch repair; NHEJ, non-homologous end joining; NER, nucleotide-excision repair.
Adavosertib (WEE-1 inhibitor)

- WEE1 kinase, regulator G2/M and S phase checkpoints
- 2-stage Phase II, N=34
- Uterine serous carcinoma
- Adavosertib 300 mg PO D1-5 and D8-12 every 21 days
- ORR 29.4%
- 6-month PFS 47.1%, median PFS 6.1 months
- DOR 9.0 months
- AE: diarrhea, fatigue, nausea, hematologic – 75% of patients required dose hold and 50% reduction, 2 patients discontinued

→ ADAGIO: phase II, N=109 – pending final results
 → ORR 28%, DOR 4.7 months, PFS 2.8 months

Liu, JCO 2021. Liu, ASCO 2023
Evaluating Azenosertib in Uterine Serous Carcinoma

Key Eligibility: Recurrent or persistent USC; ≥1 prior platinum-based chemotherapy regimen; Prior HER-2 directed therapy for known HER2+; Prior anti-PD(L)1; Measurable disease per RECIST; ECOG PS 0-1

All Comers Enrollment

Cohort 1 (N=30)
Azenosertib 400 mg QD 5:2

Cohort 2 (N=60)
Azenosertib 400 mg QD 5:2

Endpoints (ICR)

ORR
DOR

ClinicalTrials.gov NCT04814108

1 Except for sites outside the US where aPD1 is not available, or for subjects ineligible for aPD(L)1
2 Response-evaluable subjects

Abbreviations: ECOG PS, Eastern Cooperative Oncology Group performance score; RECIST, response evaluation criteria in solid tumors; ORR, objective response rate; DOR, Duration of Response
PARP combinations: NRG-GY012

22% of endometrial cancer have mutations in HR pathway (ATM, ATR)

ORR and PFS:
- Cediranib: 24.1% and 3.8 months
- Olaparib: 12.5% and 2.0 months
- Olaparib/cediranib: 31.4% and 5.5 months
- AE >grade 3: 71%, 48%, 80%, respectively

Rimel, Bender, MacKay. Cancer 2023
Other Ongoing Studies

EAY191-N4: A Randomized trial of selumetinib (MEKi) and Olaparib or selumetinib alone in patients with recurrent or persistent RAS pathway mutant ovarian and endometrial cancers (ComboMATCH treatment trial) (Westin)
Hormonal Therapy for Recurrent or Metastatic Endometrial Carcinoma

<table>
<thead>
<tr>
<th>Preferred Regimens</th>
<th>Other Recommended Regimens</th>
<th>Useful in Certain Circumstances</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Megestrol acetate/tamoxifen (alternating)</td>
<td>• Medroxyprogesterone acetate/tamoxifen (alternating)</td>
<td>• ER-positive tumors</td>
</tr>
<tr>
<td>• Everolimus/letrozole</td>
<td>• Progestational agents</td>
<td>‣ Letrozole/ribociclib</td>
</tr>
<tr>
<td></td>
<td>• Medroxyprogesterone acetate</td>
<td>‣ Letrozole/abemaciclib</td>
</tr>
<tr>
<td></td>
<td>• Megestrol acetate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aromatase inhibitors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Tamoxifen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fulvestrant</td>
<td></td>
</tr>
<tr>
<td>Treatment Description</td>
<td>ORR</td>
<td>CBR</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Progesterone single agent</td>
<td>25%</td>
<td>46%</td>
</tr>
<tr>
<td>Progesterone/tamoxifen</td>
<td>19-33%</td>
<td>69%</td>
</tr>
<tr>
<td>SERM/SERD</td>
<td>10%</td>
<td>34%</td>
</tr>
<tr>
<td>Aromatase inhibitor</td>
<td>9-17%</td>
<td>17-44%</td>
</tr>
<tr>
<td>Aromatase and mTOR inhibitor</td>
<td>22-32%</td>
<td>40-78%</td>
</tr>
<tr>
<td>Aromatase and CDK4/6 inhibitor</td>
<td>10-30%</td>
<td>64-73%</td>
</tr>
</tbody>
</table>
Hormonal therapy with mTOR inhibitors: GOG-3007

Everolimus 10 mg daily with letrozole 2.5 mg daily versus Medroxyprogesterone acetate (MPA) 200 mg daily alternating weekly with tamoxifen 20 mg BID

ORR 22% vs 25%

TRAE Grade 3 or > anemia, mucositis, hyperglycemia, fatigue and pneumonitis in the everolimus/letrozole group; versus hypertension and thromboembolic events in the hormonal therapy group

Slomovitz Gynecol Oncol 2022
VICTORIA: mTOR Inhibitor, Vistusertib, Combined With Anastrozole in Patients With Hormone Receptor–Positive Recurrent or Metastatic Endometrial Cancer

- **ORR**: 24.5 vs 17.4%

- Most common grade 3/4 AE:
 - V+A arm lymphopenia (20%), hyperglycemia (12%), and fatigue (8%)

Heudel, JAMA Oncol 2022
CDK 4/6 Inhibitors

- Hormonally driven malignancies are known to have actionable therapeutic targets.
- CDK 4/6 inhibitors induce cell-cycle arrest via G1 to S cell cycle checkpoint
- Cyclin D/CDK complex is downstream of estrogen signaling, representing potential synergic antitumor activity when combined with aromatase inhibitor.

Palbociclib
Ribociclib
Abemaciclib
ENGOT-EN3/NSGO-PALEO: letrozole +/- palbociclib, a CDK 4/6 inhibitor

Primary endpoint: PFS

HR=0.56 (95% CI 0.32–0.98)
p=0.0376
Median: 3.0 vs. 8.3 mo

Secondary endpoint: Disease control rate

<table>
<thead>
<tr>
<th>Disease control rate</th>
<th>Palbociclib + letrozole (n=33)</th>
<th>Placebo + letrozole (n=37)</th>
</tr>
</thead>
<tbody>
<tr>
<td>63.6</td>
<td>37.8</td>
<td></td>
</tr>
</tbody>
</table>

* = at 24 weeks

Letrozole+Abemaciclib

- Phase II, N=30
- Abemaciclib 150 mg PO BID and letrozole 2.5 mg PO daily
- ORR 9/30 (30%) (only in endometrioid)
- Most common ≥ grade 3 TRAE:
 - Neutropenia (20%) and anemia (17%)
- Responses independent of grade, prior hormonal therapy, MMR status, PR
- Possible biomarkers: CTNNB1, KRAS, CDKN2A, TP53

Konstantinopoulos PA, JCO 2023
Letrozole Abemaciclib

9.1 months

Konstantinopoulos PA, JCO 2023
Ongoing Trials

- **NRG GY028**: Phase IB and randomized phase II trial of medroxyprogesterone acetate +/- ipatasertib (AKT inhibitor) in recurrent/metastatic endometrioid endometrial cancer (Onstad Grinsfelder/Westin)

- **GOG-3069**: A Phase 2 Study of Alpelisib (PIK3CA inhibitor) and Fulvestrant for PIK3CA-mutated Estrogen Receptor (ER) Positive Endometroid Endometrial Cancer (Gaillard)
Conclusion

• Subclassification of endometrial cancer is complex
• Molecular profiling, including NGS and IHC, is critical and opens up new opportunities for targeted therapy
• The new landscape will need options for treatment after IO
 – Without progression on IO
 – With progression on IO
• Antibody Drug Conjugates are effective in delivering high potency chemotherapy
 – New toxicity management strategies
• Hormonal therapy and combinations can provide significant clinical benefit