Latest Molecular-Driven Clinical **Trial Data in Front-Line Advanced** Endometrial Cancer

Domenica Lorusso, MD, PhD

Monday, November 6, 2023

Catholic University of Rome and Fondazione Policlinico Gemelli IRCCS

Seoul, South Korea

Declaration of Interest

- Honoraria: AstraZeneca, Clovis, Genmab, Immunogen, Merck, Roche, Tesaro/GSK, PharmaMar
- Consulting or Advisory Role: AstraZeneca, Clovis Oncology, GSK, MSD, Immunogen, Genmab, Amgen, Seagen, PharmaMar, AstraZeneca, Merck Serono, Seagen, Genmab, Oncoinvest, Corcept, Sutro
- Speakers' Bureau: AstraZeneca, Clovis Oncology, GSK, MSD, PharmaMar
- Research Funding: Clovis (Inst), Merck (Inst), PharmaMar (Inst), Tesaro/GSK (Inst)
- Expert Testimony: Clovis

IGCS 2023 • Travel, Accommodations, Expenses: AstraZeneca, Clovis, PharmaMar, Roche, Tesaro

Study funding, medical writing, and editoria Inc., Rahway, NJ, USA

Study funding, medical writing, and editorial support: Merck Sharp & Dohme LLC, a subsidiary of Merck & Co.,

Recurrent Endometrial Cancer: Data for approved single-agent immunotherapies

*3 patients were not evaluable for a response. †Median follow-up time for cohort A1 was 13.8 mo (9.5-22.1) and cohort A2 was 11.5 mo (11.0-25.1).

NOTE-158 ¹ :	GARNET ² : Dostarlimab					
izumab in MSI-H ohorts D + K (n = 99)	Cohort A1 [†] MMRd EC (n = 106*)	Cohort A2 [†] pMMR EC (n = 142) ²				
8 (37-60)	43.4 (33.8-53.4)	13.4 (8.3-20.1)				
11 (14)	11 (10.4)	3 (2.1)				
27 (34)	35 (33.0)	16 (11.3)				
14 (18)	13 (12.3)	31 (21.8)				
23 (29)	39 (36.8)	77 (54.2)				
(2.9-49.7+)	NR	NR				

Immune-Checkpoint Inhibitor in Biomarker-Selected EC Following Platinum: Phase I GARNET Study dMMR/MSI-H EC Cohort

Oaknin. ASCO 2022. Abstr 5509.

Historical Response to Anti–PD-1 Therapy pMMR/MSS Disease

Parameter	KEYNOTE-028¹	NCT01375842 ²	GARNET³	NCT02912572 ⁴	PHAEDRA ⁵
Treatment	Pembrolizumab	Atezolizumab	Dostarlimab	Avelumab	Durvalumab
Phase	lb	la	/	II	
Cohort	Previously treated or metastatic PD-L1+ EC	Incurable or metastatic EC	Previously treated recurrent/ advanced pMMR EC	pMMR recurrent EC	Recurrent pMMR EC
Patients, n	23	15	142	16	35
ORR, %	13*	13†	13.4	6	3
mPFS	1.8 mo	1.4 mo		1.9 mo	
mOS	NR	9.6 mo		6.6 mo	

1. Olt. JCO. 2017;35:2636. 2. Fleming. ASCO 2017. Abstr 5585. 3. Oaknin. ESMO 2020. Abstr LBA36. 4. Konstantinopoulos. JCO.2019;37:2786. 5. Antill. ASCO 2019. Abstr 5501

Immunotherapy Combination Leveraging ICI's Activity

Neoantigens repertoire expansion Radiotherapy Upregulation of costimulatory cellsurface receptors Release of neo-antigens MCH II expression "abscopal effect" Chemotherapy inducing immunogenic cell death Release of neo-antigens disrupting strategies that tumors use to evade immune recognition.

anti-VEGF and ICIs

IGCS 2023

T cells infiltration Vasculature normalization Maturation of DC Antigen presentation T cells infiltration and trafficking Downregulation of PD-L1 expression

Study 309/KEYNOTE-775: Lenvatinib + Pembrolizumab **After Platinum in Advanced EC**

Confirmatory, randomized, open-label phase III study

Stratified by MMR status (pMMR vs dMMR), within pMMR by region, ECOG PS 0 vs 1, prior history of pelvic radiation

Primary endpoints: PFS by BICR, OS

FDA Accelerated Approval September 2019 FDA Priority Review May 2021 For patients with endometrial cancer who are not MSI-H or dMMR

Lenvatinib 20 mg PO QD + Pembrolizumab 200 mg IV Q3W (n = 411)

Until PD or unacceptable toxicity

Doxorubicin 60 mg/m² IV Q3W or Paclitaxel 80 mg/m² IV QW 3 wk on/1 wk off (n = 416)

- Secondary endpoints: ORR, health-related quality of life, pharmacokinetics, safety
- Key exploratory endpoint: DoR

Study 309/KEYNOTE-775: PFS and OS Benefit

pMMR

All Comers

Treatment Exposure, Safety, and Discontinuation in All Comers

Median duration of treatment, days (

Patients with any TEAEs (%) Grade ≥ 3

Patients with any TEAEs leading to reductions (%)^a

Patients with any grade TEAEs leadi to discontinuation (%)^b

LEN^c

Pembro^c

LEN + pembro

Patients with any grade TEAEs lead to interruption (%)^b LEN^c Pembro^c LEN + pembro

^aIncludes LEN only or Treatment of Physician's Choice (TPC). ^bIncludes LEN or pembro or LEN + pembro or TPC. ^cRegardless of action taken with the other drug in the combination arm.

	LEN + PEMBRO (n = 406)	TPC (n = 388)
(range)	231 (1-817)	104.5 (1-785)
	99.8 88.9	99.5 72.7
dose	66.5	12.9
ing	33.0	8.0
	30.8 18.7 14 0	
ing	69.2	27.1
	58.6 50.0	
	30.8	

Study 309/KEYNOTE-775: TEAEs

TEAE, %	Lenvatinib + Pembrolizumab (n = 406)		Doxorubicin or Paclitaxel (n = 388)		TEAE, %	Lenvatinib + Pembrolizumab (n = 406)		Doxorubicin or Paclitaxel (n = 388)		
	Any Grade	Grade ≥3*	Any Grade	Grade ≥3*			Any Grade	Grade ≥3*	Any Grade	Grade ≥3*
Hypertension Hypothyroidism Diarrhea Nausea Decreased appetite Vomiting Weight decrease Fatigue Arthralgia	65.0 58.9 55.7 51.7 46.6 37.7 35.5 34.0 32.3	39.2 1.5 8.1 3.4 7.6 3.0 10.8 5.4 1.7	5.2 0.8 20.4 46.4 21.4 21.1 5.9 27.6 8.0	$\begin{array}{c} 2.6 \\ 0 \\ 2.1 \\ 1.3 \\ 0.5 \\ 2.6 \\ 0.3 \\ 3.1 \\ 0 \end{array}$		Proteinuria Constipation Anemia UTI Headache Neutropenia Alopecia	30.5 28.3 28.1 27.6 26.4 9.1 5.9	5.2 0.7 6.9 4.2 0.5 2.0 0	3.4 24.5 48.7 10.3 9.0 34.0 30.9	0.3 0.5 15.5 1.0 0.3 26.0 0.3

*In the lenvatinib and pembrolizumab arm, 6.4% of patients suffered grade 5 AEs, and 5.2% of patients in the TPC arm suffered grade 5 AEs.

Makker. NEJM. 2022;386:437. Makker. JCO. 2023;[Epub].

ICIs in unselected EC population Combination approaches to enhance ICIs efficacy

Neoantigens repertoire expansion Upregulation of costimulatory cellsurface receptors MCH II expression T cells infiltration

anti-VEGF and ICIs

Vasculature normalization Maturation of DC Antigen presentation T cells infiltration and trafficking Downregulation of PD-L1 expression

Radiotherapy Release of neo-antigens "abscopal effect"

Chemotherapy

inducing immunogenic cell death Release of neo-antigens disrupting strategies that tumors use to evade immune recognition.

Clinically Significant Data

Dostarlimab in Combination with Chemotherapy for the Treatment of Primary Advanced or Recurrent Endometrial Cancer: a Placebo-Controlled Randomized Phase 3 Trial (ENGOT-EN6-NSGO/GOG-3031/RUBY)

Mansoor R. Mirza,¹ Dana Chase,² Brian Slomovitz,³ René DePont Christensen,⁴ Zoltán Novák,⁵ Destin Black,⁶ Lucy Gilbert, Sudarshan Sharma,⁸ Giorgio Valabrega,⁹ Lisa M. Landrum,¹⁰ Lars C. Hanker,¹¹ Ashley Stuckey,¹² Ingrid Boere,¹³ Michael A Gold,¹⁴ Sarah E. Gill,¹⁵ Bradley J. Monk,¹⁶ Zangdong He,¹⁷ Shadi Stevens,¹⁸ Robert L. Coleman,¹⁹ Matthew A. Powell²⁰

Dr. Mirza presents RUBY Part 1 data¹

July 31, 2023: Dostarlimab + chemotherapy approved as 1L treatment for dMMR/MSI-H EC (US)¹

Eskander RN, Pembrolizumab plus Chemotherapy in Advanced Endometrial Cancer; N Engl J Med 2023; 388:2159-2170; Mirza MR, Dostarlimab for Primary Advanced or Recurrent Endometrial Cance;; N Engl J Med 2023; 388:2145-2158

Pembrolizumab Versus Placebo in Addition to Carboplatin and Paclitaxel for Measurable Stage III or IVA, Stage IVB, or Recurrent Endometrial Cancer: The Phase 3, NRG GY018 Study

Ramez N. Eskander, MD, Michael W. Sill, PhD, Lindsey Beffa, MD, Richard G. Moore, MD, Joanie Mayer Hope, MD, Fernanda B. Musa, MD, Robert Mannel, MD, Mark S. Shahin, MD, Guilherme H. Cantuaria, MD, Eugenia Girda, MD, Cara Mathews, MD, Juraj Kavecansky, MD, Charles A. Leath, III, MD, MSPH, Lilian T. Gien, MD, Emily M. Hinchcliff, MD, MPH, Shashikant B. Lele, MD, Lisa M. Landrum, MD, Floor Backes, MD, Roisin E. O'Cearbhaill, MD, Tareg Al Baghdadi, MD, Emily K. Hill, MD, Premal H. Thaker, MD, MS, Veena Susan John, MD, Stephe Welch, MD, Amanda N Fader, MD, Matthew A. Powell, MD, Carol Aghajanian, MD

Dr. Eskander presents GY018 data²

RUBY Part 1 | ENGOT-en6 | GOG-3031¹

Eligible patients

- Histologically or cytologically proven EC with recurrent or advanced disease
- Stage III or IV disease or first recurrence of EC with low potential for cure by use of radiation therapy or surgery alone or in combination
 - Carcinosarcoma, clear cell, serous, or mixed histology
- Naive to systemic therapy or systemic anticancer therapy and recurrence or PD ≥6 months after completing treatment
- ECOG PS 0 or 1
- Adequate organ function

Stratification

- MMR/MSI status
- Prior radiotherapy
- Disease status

1...Mirza MR, et al. N Engl J Med. 2023;388:2145-2158.

R 1:1 N=494 dMMR,

Part 1

n=118

Primary end points: PFS (IA), OS Secondary end points: PFS (BICR), PFS2, ORR/ DOR/DCR, QOL, PK and immunogenicity, safety

IGCS 2023

. 1..Mirza MR, et al. *N Engl J Med*. 2023;388:2145-2158.

RUBY Part 1 | ENGOT-en6 | GOG-3031¹

RUBY Part 1 | ENGOT-en6 | GOG-3031¹

IGCS 2023

. 1...Mirza MR, et al. *N Engl J Med*. 2023;388:2145-2158.

Overall population

HR, 0.64 (95% CI, 0.51-0.80)

RUBY Part 1 | ENGOT-en6 | GOG-3031¹

IGCS 2023

. 1.. Mirza MR, et al. N Engl J Med. 2023;388:2145-2158.

Efficacy per molecular classification was an exploratory analysis.

dMMR, mismatch repair deficient; IHC, immunohistochemistry; MMRp, mismatch repair proficient; MSI-H, microsatellite instability-high; mut, mutated; NGS, next generation sequencing; NSMP, no specific molecular profile; PCR, polymerase chain reaction; POL_ε, polymerase epsilon; SCNA, somatic copy number alterations; TIL, tumor-infiltrating lymphocytes; TLS, tertiary lymphoid structures; TP53, tumor protein 53; WES, whole exome DNA sequencing; WT, wild type.

Dr Mansoor Raza Mirza

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

PFS According to Molecular Subgroup

Data based on exploratory analysis based on 400 patients from the RUBY trial with known molecular classification with whole exome sequencing. CP, carboplatin-paclitaxel; D, dostarlimab; dMMR, mismatch repair deficient; HR, hazard ratio; MSI-H, microsatellite instability–high; mut, mutated; NR, not reached; NSMP, no specific molecular profile; OS, overall survival; PBO, placebo; POLε, polymerase epsilon; TP53, tumor protein 53.

OS According to Molecular Subgroup

Data based on exploratory analysis based on 400 patients from the RUBY trial with known molecular classification with whole exome sequencing. CP, carboplatin-paclitaxel; D, dostarlimab; dMMR, mismatch repair deficient; HR, hazard ratio; MSI-H, microsatellite instability-high; mut, mutated; NR, not reached; NSMP, no specific molecular profile; OS, overall survival; PBO, placebo; POLε, polymerase epsilon; TP53, tumor protein 53.

GY018 | **KEYNOTE-868**¹

Eligible patients

- Histologically confirmed recurrent or advanced (stage III, IVA, or IVB) EC
- ECOG PS of 0-2
- Results of institutional MMR IHC testing
- Submission of tumor specimens for centralized MMR IHC testing
- No prior chemotherapy treatment for EC
- Prior adjuvant chemotherapy allowed if completed ≥12 months before enrollment

Stratification

- MMR status
- ECOG PS (0, 1 or 2)
- Prior chemotherapy (yes/no)

R 1:1 N=816 dMMR, n=225 pMMR, n=591

> **Primary end point:** PFS (IA) Secondary end points: AEs, ORR, DOR, OS, QOL, concordance between institutional MMR IHC and centralized MMR IHC

IGCS 12023

1. Eskander RN, et al. *N Engl J Med*. 2023;388:2159-2170.

GY018 | **KEYNOTE-868**¹

IGCS 2023

1. Eskander RN, et al. N Engl J Med. 2023;388:2159-2170.

GY018 | KEYNOTE-868¹

pMMR population¹⁻³

ICIs in unselected EC population Combination approaches to enhance ICIs efficacy

Radiotherapy Release of neo-antigens "abscopal effect"

Chemotherapy

inducing immunogenic cell death Release of neo-antigens disrupting strategies that tumors use to evade immune recognition.

ICI's Activity and PARP inhibitors: Combination Approaches

Phase 2:Talazoparib 1mg PO daily and Avelumab 10 mg/kg IV every 2 weeks in N= 35 previously pretreated recurrent MSS EC patients.

Phase 2 DOMEC trial: Durvalumab 1500 mg i.v. every 4weeks and Olaparib 300mg/12h in N=50 previously pretreated recurrent (20%dMMR) EC patients.

PARPis plus ICIs in advanced Endometrial Cancer Ongoing phase III randomized trials

RUBY trial: Study design

Multicenter Phase 3 study that will evaluate the efficacy and safety of DOSTARLIMAB + carboplatin-paclitaxel followed by **DOSTARLIMAB + NIRAPARIB**

DUO-E trial: Study design

Multicenter Phase 3 study that will evaluate the efficacy and safety of DURVALUMAB + carboplatin-paclitaxel followed by **DURVALUMAB + OLAPARIB or DURVALUMAB or OLAPARIB**

DUO-E study design

Patients

- Newly diagnosed FIGO 2009 Stage III/IV or recurrent endometrial cancer
- Known MMR status
- Naïve to first-line systemic anticancer treatment for advanced disease
- Naïve to PARP inhibitors and immunemediated therapy
- Adjuvant chemotherapy allowed if ≥ 12 months from last treatment to relapse
- All histologies except sarcomas

*Six cycles of carboplatin at an area under the concentration-time curve of 5 or 6 mg per mL/min and paclitaxel 175 mg/m². bid, twice daily; CP, carboplatin/paclitaxel; durva, durvalumab; FIGO, International Federation of Gynaecology and Obstetrics; IV, HRRm, homologous recombination repair mutation; intravenously; ola, olaparib; pbo, placebo; q3(4)w, every 3(4) weeks; R, randomisation; RECIST, Response Evaluation Criteria for Solid Tumours.

Shannon N. Westin

discontinuation criteria were met

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

PFS: ITT population Primary endpoint

The median (range) duration of follow-up for PFS was 12.6 (0.0–31.6), 15.4 (0.0–29.1), and 15.4 (0.0–31.7) months in censored patients for the Control, Durva, and Durva+Ola arms, respectively. PFS rates were estimated by the KM method. *CI for median PFS is derived based on the Brookmeyer-Crowley method; †The primary PFS analysis for each comparison was performed separately. The HR and CI were estimated from a Cox proportional hazards model stratified by MMR and disease status. The CI was calculated using a profile likelihood approach. The P value was calculated using a log-rank test stratified by MMR and disease status. HR, hazard; ITT, intent-to-treat; KM, Kaplan–Meier. Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Shannon N. Westin

OS: ITT population

Secondary endpoint; interim analysis

The median (range) duration of follow-up for OS was 18.6 (0.5–32.9), 18.4 (2.1–33.0), and 18.7 (1.1–33.4) months in censored patients for the Control, Durva, and Durva+Ola arms, respectively. OS rates were estimated by the KM method. *CI for median OS is derived based on the Brookmeyer-Crowley method; †The HRs were estimated from an unstratified Cox proportional hazards model. The CI was calculated using a profile likelihood approach. P values were calculated using an unstratified log-rank test. P values failed to reach statistical significance. ngress NR. not reached.

Shannon N. Westin

		Control (N=241)	Durva (N=238)	Durv (N=
	Events, n (%)	82 (34.0)	65 (27.3)	52 (
	Median OS (95% CI),* months	25.9 (23.9–NR)	NR (NR–NR)	NR (N
IS)	HR (95% CI) vs Control [†]		0.77 (0.56– 1.07); <i>P</i> =0.120	0.59 0.8 <i>P</i> =0
)	HR (95% CI) vs Durva [†]			0.77 (0.
╵ [┍] ┼┼┼┼┼┺╊╫╫ ┡┱╶┼╏╋╋╼ <u>╼</u> ╵┽╶╫╴┈┼┶╓┿╼ <mark>┦┩╶╴╊╂┼┼┼╂╫╫</mark> ╶┼╶╫╴╫┼╢┈┼┈╫╫╫╶╧ _{┛╫╢}	₽ ₂ — ¹	Durva+Ola Overa Durva	all data maturity 2	27.7%
		Control		

21	24	27	30	33	36
omisation					
77	38	18	8	2	0
64	34	17	6	0	0
69	35	15	4	0	0

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Subgroup analysis of PFS by MMR status Prespecified exploratory analysis

*CI for median PFS was derived based on the Brookmeyer-Crowley method; †The HR and CI were estimated from an unstratified Cox proportional hazards model.

Subgroup analysis of PFS by PD-L1 status

Prespecified exploratory analysis

Exploratory subgroup analysis. PD-L1 expression evaluated using Ventana SP263. Prevalence shown is based on patients with known PD-L1 status. *CI for median PFS was derived based on the Brookmeyer–Crowley method; †The HR and CI were estimated from an unstratified Cox proportional hazards model.